eqemu-server/common/pathfind.cpp

350 lines
7.8 KiB
C++

#include "pathfind.h"
#include "random.h"
#include <stdio.h>
#include <string.h>
#include <zlib.h>
namespace Pathfind
{
uint32_t InflateData(const char* buffer, uint32_t len, char* out_buffer, uint32_t out_len_max) {
z_stream zstream;
int zerror = 0;
int i;
zstream.next_in = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(buffer));
zstream.avail_in = len;
zstream.next_out = reinterpret_cast<unsigned char*>(out_buffer);;
zstream.avail_out = out_len_max;
zstream.zalloc = Z_NULL;
zstream.zfree = Z_NULL;
zstream.opaque = Z_NULL;
i = inflateInit2(&zstream, 15);
if (i != Z_OK) {
return 0;
}
zerror = inflate(&zstream, Z_FINISH);
if (zerror == Z_STREAM_END) {
inflateEnd(&zstream);
return zstream.total_out;
}
else {
if (zerror == -4 && zstream.msg == 0)
{
return 0;
}
zerror = inflateEnd(&zstream);
return 0;
}
}
}
const uint32_t nav_mesh_file_version = 2;
const float max_dest_drift = 10.0f;
const float at_waypoint_eps = 1.0f;
EQEmu::Random path_rng;
float vec_dist(const glm::vec3 &a, const glm::vec3 &b) {
float dist_x = a.x - b.x;
float dist_y = a.y - b.y;
float dist_z = a.z - b.z;
return sqrt((dist_x * dist_x) + (dist_y * dist_y) + (dist_z * dist_z));
}
PathfindingManager::PathfindingManager()
{
m_nav_mesh = nullptr;
m_nav_query = nullptr;
m_filter.setIncludeFlags(NavigationPolyFlagAll);
m_filter.setAreaCost(NavigationAreaFlagNormal, 1.0f);
m_filter.setAreaCost(NavigationAreaFlagWater, 2.5f);
m_filter.setAreaCost(NavigationAreaFlagLava, 2.5f);
m_filter.setAreaCost(NavigationAreaFlagPvP, 1.0f);
m_filter.setAreaCost(NavigationAreaFlagSlime, 1.0f);
m_filter.setAreaCost(NavigationAreaFlagIce, 1.0f);
m_filter.setAreaCost(NavigationAreaFlagVWater, 2.5f);
m_filter.setAreaCost(NavigationAreaFlagGeneralArea, 1.0f);
m_filter.setAreaCost(NavigationAreaFlagPortal, 1.0f);
}
PathfindingManager::~PathfindingManager()
{
Clear();
}
void PathfindingManager::Load(const std::string &zone_name)
{
Clear();
std::string filename = MAP_DIR + std::string("/") + zone_name + ".nav";
FILE *f = fopen(filename.c_str(), "rb");
if (f) {
char magic[9] = { 0 };
if (fread(magic, 9, 1, f) != 1) {
fclose(f);
return;
}
if (strncmp(magic, "EQNAVMESH", 9) != 0)
{
fclose(f);
return;
}
uint32_t version = 0;
if (fread(&version, sizeof(uint32_t), 1, f) != 1) {
fclose(f);
return;
}
if (version != nav_mesh_file_version) {
fclose(f);
return;
}
uint32_t data_size;
if (fread(&data_size, sizeof(data_size), 1, f) != 1) {
fclose(f);
return;
}
uint32_t buffer_size;
if (fread(&buffer_size, sizeof(buffer_size), 1, f) != 1) {
fclose(f);
return;
}
std::vector<char> data;
data.resize(data_size);
if (fread(&data[0], data_size, 1, f) != 1) {
fclose(f);
return;
}
std::vector<char> buffer;
buffer.resize(buffer_size);
uint32_t v = Pathfind::InflateData(&data[0], data_size, &buffer[0], buffer_size);
fclose(f);
char *buf = &buffer[0];
m_nav_mesh = dtAllocNavMesh();
uint32_t number_of_tiles = *(uint32_t*)buf;
buf += sizeof(uint32_t);
dtNavMeshParams params = *(dtNavMeshParams*)buf;
buf += sizeof(dtNavMeshParams);
dtStatus status = m_nav_mesh->init(&params);
if (dtStatusFailed(status))
{
dtFreeNavMesh(m_nav_mesh);
m_nav_mesh = nullptr;
return;
}
for (unsigned int i = 0; i < number_of_tiles; ++i)
{
uint32_t tile_ref = *(uint32_t*)buf;
buf += sizeof(uint32_t);
int32_t data_size = *(uint32_t*)buf;
buf += sizeof(uint32_t);
if (!tile_ref || !data_size) {
dtFreeNavMesh(m_nav_mesh);
m_nav_mesh = nullptr;
return;
}
unsigned char* data = (unsigned char*)dtAlloc(data_size, DT_ALLOC_PERM);
memcpy(data, buf, data_size);
buf += data_size;
m_nav_mesh->addTile(data, data_size, DT_TILE_FREE_DATA, tile_ref, 0);
}
}
}
void PathfindingManager::Clear()
{
if (m_nav_mesh) {
dtFreeNavMesh(m_nav_mesh);
m_nav_mesh = nullptr;
}
if (m_nav_query) {
dtFreeNavMeshQuery(m_nav_query);
m_nav_query = nullptr;
}
}
PathfindingRoute PathfindingManager::FindRoute(const glm::vec3 &src_loc, const glm::vec3 &dest_loc)
{
glm::vec3 current_location(src_loc.x, src_loc.z, src_loc.y);
glm::vec3 dest_location(dest_loc.x, dest_loc.z, dest_loc.y);
PathfindingRoute ret;
ret.m_dest = dest_loc;
ret.m_current_node = 0;
ret.m_active = true;
if (!m_nav_mesh) {
PathfindingNode dest;
dest.flag = NavigationPolyFlagNormal;
dest.position = dest_loc;
ret.m_nodes.push_back(dest);
return ret;
}
if (!m_nav_query) {
m_nav_query = dtAllocNavMeshQuery();
m_nav_query->init(m_nav_mesh, 4092);
}
dtPolyRef start_ref;
dtPolyRef end_ref;
glm::vec3 ext(10.0f, 10.0f, 10.0f);
m_nav_query->findNearestPoly(&current_location[0], &ext[0], &m_filter, &start_ref, 0);
m_nav_query->findNearestPoly(&dest_location[0], &ext[0], &m_filter, &end_ref, 0);
if (!start_ref || !end_ref) {
PathfindingNode dest;
dest.flag = NavigationPolyFlagNormal;
dest.position = dest_loc;
ret.m_nodes.push_back(dest);
return ret;
}
int npoly = 0;
dtPolyRef path[256] = { 0 };
m_nav_query->findPath(start_ref, end_ref, &current_location[0], &dest_location[0], &m_filter, path, &npoly, 256);
if (npoly) {
glm::vec3 epos = dest_location;
if (path[npoly - 1] != end_ref)
m_nav_query->closestPointOnPoly(path[npoly - 1], &dest_location[0], &epos[0], 0);
float straight_path[256 * 3];
unsigned char straight_path_flags[256];
int n_straight_polys;
dtPolyRef straight_path_polys[256];
m_nav_query->findStraightPath(&current_location[0], &epos[0], path, npoly,
straight_path, straight_path_flags,
straight_path_polys, &n_straight_polys, 256, DT_STRAIGHTPATH_ALL_CROSSINGS);
if (n_straight_polys) {
ret.m_nodes.reserve(n_straight_polys);
for (int i = 0; i < n_straight_polys; ++i)
{
PathfindingNode node;
node.position.x = straight_path[i * 3];
node.position.z = straight_path[i * 3 + 1];
node.position.y = straight_path[i * 3 + 2];
if (!dtStatusSucceed(m_nav_mesh->getPolyFlags(straight_path_polys[i], &node.flag))) {
node.flag = 0;
}
ret.m_nodes.push_back(node);
}
}
}
else {
PathfindingNode dest;
dest.flag = NavigationPolyFlagNormal;
dest.position = dest_loc;
ret.m_nodes.push_back(dest);
}
return ret;
}
bool PathfindingManager::GetRandomPoint(const glm::vec3 &start, float radius, glm::vec3 &pos)
{
if(!m_nav_mesh)
return false;
if (!m_nav_query) {
m_nav_query = dtAllocNavMeshQuery();
m_nav_query->init(m_nav_mesh, 4092);
}
glm::vec3 ext(10.0f, 10.0f, 10.0f);
dtPolyRef start_ref;
m_nav_query->findNearestPoly(&start[0], &ext[0], &m_filter, &start_ref, 0);
if (!start_ref) {
return false;
}
dtPolyRef random_ref;
glm::vec3 pt;
dtStatus status = m_nav_query->findRandomPointAroundCircle(start_ref, &start[0], radius,
&m_filter, []() -> float { return (float)path_rng.Real(0.0, 1.0); }, &random_ref, &pt[0]);
if (dtStatusSucceed(status))
{
pos.x = pt.x;
pos.z = pt.y;
pos.y = pt.z;
return true;
}
return false;
}
PathfindingRoute::PathfindingRoute()
{
m_active = false;
}
PathfindingRoute::~PathfindingRoute()
{
}
bool PathfindingRoute::DestinationValid(const glm::vec3 &dest)
{
if (m_current_node >= 255) {
return false;
}
auto dist = vec_dist(dest, m_dest);
if (dist <= max_dest_drift) {
return true;
}
return false;
}
void PathfindingRoute::CalcCurrentNode(const glm::vec3 &current_pos, bool &wp_changed)
{
wp_changed = false;
if (m_active) {
//if we're at last node then we dont need to do anything.
if (m_nodes.size() - 1 == m_current_node) {
return;
}
auto &current = GetCurrentNode();
auto dist = vec_dist(current.position, current_pos);
if (dist < at_waypoint_eps) {
m_current_node++;
wp_changed = true;
}
}
}
unsigned short PathfindingRoute::GetPreviousNodeFlag()
{
if(m_current_node == 0)
return 0;
return m_nodes[m_current_node - 1].flag;
}