eqemu-server/zone/position.cpp
Alex King 5b85f89c21
[Cleanup] Cleanup position methods (#4015)
# Notes
- Cleanup logic.
2024-01-24 22:47:24 -06:00

285 lines
7.8 KiB
C++

#include "position.h"
#include <string>
#include <cmath>
#include "../common/strings.h"
#include "../common/data_verification.h"
constexpr float position_eps = 0.0001f;
std::string to_string(const glm::vec4 &position)
{
return fmt::format(
"({:.3f}, {:.3f}, {:.3f}, {:.3f})",
position.x,
position.y,
position.z,
position.w
);
}
std::string to_string(const glm::vec3 &position)
{
return fmt::format(
"({:.3f}, {:.3f}, {:.3f})",
position.x,
position.y,
position.z
);
}
std::string to_string(const glm::vec2 &position)
{
return fmt::format(
"({:.3f}, {:.3f})",
position.x,
position.y
);
}
bool IsOrigin(const glm::vec3 &position) {
return glm::dot(position, position) == 0;
}
bool IsOrigin(const glm::vec4 &position) {
return IsOrigin(glm::vec3(position));
}
/**
* Produces the non square root'ed distance between the two points within the XY plane.
*/
float DistanceSquared(const glm::vec2& point1, const glm::vec2& point2) {
auto diff = point1 - point2;
return glm::dot(diff, diff);
}
/**
* Produces the distance between the two points on the XY plane.
*/
float Distance(const glm::vec2& point1, const glm::vec2& point2) {
return std::sqrt(DistanceSquared(point1, point2));
}
/**
* Produces the non square root'ed distance between the two points.
*/
float DistanceSquared(const glm::vec3& point1, const glm::vec3& point2) {
auto diff = point1 - point2;
return glm::dot(diff, diff);
}
/**
* Produces the non square root'ed distance between the two points.
*/
float DistanceSquared(const glm::vec4& point1, const glm::vec4& point2) {
return DistanceSquared(static_cast<glm::vec3>(point1), static_cast<glm::vec3>(point2));
}
/**
* Produces the distance between the two points.
*/
float Distance(const glm::vec3& point1, const glm::vec3& point2) {
return std::sqrt(DistanceSquared(point1, point2));
}
/**
* Produces the distance between the two points.
*/
float Distance(const glm::vec4& point1, const glm::vec4& point2) {
return Distance(static_cast<glm::vec3>(point1), static_cast<glm::vec3>(point2));
}
/**
* Produces the distance between the two points within the XY plane.
*/
float DistanceNoZ(const glm::vec3& point1, const glm::vec3& point2) {
return Distance(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
}
/**
* Produces the distance between the two points within the XY plane.
*/
float DistanceNoZ(const glm::vec4& point1, const glm::vec4& point2) {
return Distance(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
}
/**
* Produces the non square root'ed distance between the two points within the XY plane.
*/
float DistanceSquaredNoZ(const glm::vec3& point1, const glm::vec3& point2) {
return DistanceSquared(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
}
/**
* Produces the non square root'ed distance between the two points within the XY plane.
*/
float DistanceSquaredNoZ(const glm::vec4& point1, const glm::vec4& point2) {
return DistanceSquared(static_cast<glm::vec2>(point1),static_cast<glm::vec2>(point2));
}
/**
* Determines if 'position' is within (inclusive) the axis aligned
* box (3 dimensional) formed from the points minimum and maximum.
*/
bool IsWithinAxisAlignedBox(const glm::vec3 &position, const glm::vec3 &minimum, const glm::vec3 &maximum) {
auto min = glm::vec3(
std::min(minimum.x, maximum.x),
std::min(minimum.y, maximum.y),
std::min(minimum.z, maximum.z)
);
auto max = glm::vec3(
std::max(minimum.x, maximum.x),
std::max(minimum.y, maximum.y),
std::max(minimum.z, maximum.z)
);
const bool x_check = EQ::ValueWithin(position.x, min.x, max.x);
const bool y_check = EQ::ValueWithin(position.y, min.y, max.y);
const bool z_check = EQ::ValueWithin(position.z, min.z, max.z);
return x_check && y_check && z_check;
}
/**
* Determines if 'position' is within (inclusive) the axis aligned
* box (2 dimensional) formed from the points minimum and maximum.
*/
bool IsWithinAxisAlignedBox(const glm::vec2 &position, const glm::vec2 &minimum, const glm::vec2 &maximum) {
auto min = glm::vec2(std::min(minimum.x, maximum.x), std::min(minimum.y, maximum.y));
auto max = glm::vec2(std::max(minimum.x, maximum.x), std::max(minimum.y, maximum.y));
const bool x_check = EQ::ValueWithin(position.x, min.x, max.x);
const bool y_check = EQ::ValueWithin(position.y, min.y, max.y);
return x_check && y_check;
}
/**
* Gives the heading directly 180 degrees from the
* current heading.
* Takes the EQfloat from the glm::vec4 and returns
* an EQFloat.
*/
float GetReciprocalHeading(const glm::vec4& point1) {
return GetReciprocalHeading(point1.w);
}
/**
* Gives the heading directly 180 degrees from the
* current heading.
* Takes an EQfloat and returns an EQFloat.
*/
float GetReciprocalHeading(const float heading)
{
float result;
// Convert to radians
const float h = (heading / 512.0f) * 6.283184f;
// Calculate the reciprocal heading in radians
result = h + 3.141592f;
// Convert back to eq heading from radians
result = (result / 6.283184f) * 512.0f;
return result;
}
bool IsHeadingEqual(const float h1, const float h2)
{
return std::abs(h2 - h1) < 0.01f;
}
bool IsPositionEqual(const glm::vec2 &p1, const glm::vec2 &p2)
{
return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps;
}
bool IsPositionEqual(const glm::vec3 &p1, const glm::vec3 &p2)
{
return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < position_eps;
}
bool IsPositionEqual(const glm::vec4 &p1, const glm::vec4 &p2)
{
return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < position_eps;
}
bool IsPositionEqualWithinCertainZ(const glm::vec3 &p1, const glm::vec3 &p2, float z_eps) {
return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < z_eps;
}
bool IsPositionEqualWithinCertainZ(const glm::vec4 &p1, const glm::vec4 &p2, float z_eps) {
return std::abs(p1.x - p2.x) < position_eps && std::abs(p1.y - p2.y) < position_eps && std::abs(p1.z - p2.z) < z_eps;
}
bool IsPositionWithinSimpleCylinder(const glm::vec3 &p1, const glm::vec3 &cylinder_center, float cylinder_radius, float cylinder_height)
{
//If we're outside the height of cylinder then we're not in it (duh)
auto d = std::abs(p1.z - cylinder_center.z);
if (d > cylinder_height / 2.0) {
return false;
}
glm::vec2 p1d(p1.x, p1.y);
glm::vec2 ccd(cylinder_center.x, cylinder_center.y);
//If we're outside the radius of the cylinder then we're not in it (also duh)
d = Distance(p1d, ccd);
if (d > cylinder_radius) {
return false;
}
return true;
}
bool IsPositionWithinSimpleCylinder(const glm::vec4 &p1, const glm::vec4 &cylinder_center, float cylinder_radius, float cylinder_height)
{
//If we're outside the height of cylinder then we're not in it (duh)
auto d = std::abs(p1.z - cylinder_center.z);
if (d > cylinder_height / 2.0) {
return false;
}
glm::vec2 p1d(p1.x, p1.y);
glm::vec2 ccd(cylinder_center.x, cylinder_center.y);
//If we're outside the radius of the cylinder then we're not in it (also duh)
d = Distance(p1d, ccd);
if (d > cylinder_radius) {
return false;
}
return true;
}
float CalculateHeadingAngleBetweenPositions(float x1, float y1, float x2, float y2)
{
float x_diff = std::abs(x1 - x2);
float y_diff = std::abs(y1 - y2);
if (y_diff < 0.0000009999999974752427) {
y_diff = 0.0000009999999974752427;
}
const float angle = atan2(x_diff, y_diff) * 180.0f * 0.3183099014828645f; // angle, nice "pi"
// return the right thing based on relative quadrant
// I'm sure this could be improved for readability, but whatever
if (y1 >= y2) {
if (x2 >= x1) {
return (90.0f - angle + 90.0f) * 511.5f * 0.0027777778f;
}
if (x2 <= x1) {
return (angle + 180.0f) * 511.5f * 0.0027777778f;
}
}
if (y1 > y2 || x2 > x1) {
return angle * 511.5f * 0.0027777778f;
} else {
return (90.0f - angle + 270.0f) * 511.5f * 0.0027777778f;
}
}