eqemu-server/libs/zlibng/arch/x86/adler32_ssse3.c
Alex 2957f5084d
[Library] Update zlibng (#1255)
* Update zlibng

* Set cmake path more directly in zlibng to hopefully fix an issue with the build on drone

* I'm dumb, missing / in path

* Mackal helps with a dumb gitignore issue

* Adding all the files, not sure what's ignoring them and im tired of looking

* Some tweaks to zlibng build to hopefully get it to build properly. works on msvc now
2021-02-23 19:00:26 -06:00

119 lines
3.9 KiB
C

/* adler32.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2011 Mark Adler
* Authors:
* Brian Bockelman <bockelman@gmail.com>
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "../../zbuild.h"
#include "../../zutil.h"
#include "../../adler32_p.h"
#ifdef X86_SSSE3_ADLER32
#include <immintrin.h>
Z_INTERNAL uint32_t adler32_ssse3(uint32_t adler, const unsigned char *buf, size_t len) {
uint32_t sum2;
/* split Adler-32 into component sums */
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (UNLIKELY(len == 1))
return adler32_len_1(adler, buf, sum2);
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (UNLIKELY(buf == NULL))
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (UNLIKELY(len < 16))
return adler32_len_16(adler, buf, len, sum2);
uint32_t ALIGNED_(16) s1[4], s2[4];
s1[0] = s1[1] = s1[2] = 0; s1[3] = adler;
s2[0] = s2[1] = s2[2] = 0; s2[3] = sum2;
char ALIGNED_(16) dot1[16] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
__m128i dot1v = _mm_load_si128((__m128i*)dot1);
char ALIGNED_(16) dot2[16] = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
__m128i dot2v = _mm_load_si128((__m128i*)dot2);
short ALIGNED_(16) dot3[8] = {1, 1, 1, 1, 1, 1, 1, 1};
__m128i dot3v = _mm_load_si128((__m128i*)dot3);
// We will need to multiply by
//char ALIGNED_(16) shift[4] = {0, 0, 0, 4}; //{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4};
char ALIGNED_(16) shift[16] = {4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__m128i shiftv = _mm_load_si128((__m128i*)shift);
while (len >= 16) {
__m128i vs1 = _mm_load_si128((__m128i*)s1);
__m128i vs2 = _mm_load_si128((__m128i*)s2);
__m128i vs1_0 = vs1;
int k = (len < NMAX ? (int)len : NMAX);
k -= k % 16;
len -= k;
while (k >= 16) {
/*
vs1 = adler + sum(c[i])
vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
NOTE: 256-bit equivalents are:
_mm256_maddubs_epi16 <- operates on 32 bytes to 16 shorts
_mm256_madd_epi16 <- Sums 16 shorts to 8 int32_t.
We could rewrite the below to use 256-bit instructions instead of 128-bit.
*/
__m128i vbuf = _mm_loadu_si128((__m128i*)buf);
buf += 16;
k -= 16;
__m128i v_short_sum1 = _mm_maddubs_epi16(vbuf, dot1v); // multiply-add, resulting in 8 shorts.
__m128i vsum1 = _mm_madd_epi16(v_short_sum1, dot3v); // sum 8 shorts to 4 int32_t;
__m128i v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v);
vs1 = _mm_add_epi32(vsum1, vs1);
__m128i vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
vs1_0 = _mm_sll_epi32(vs1_0, shiftv);
vsum2 = _mm_add_epi32(vsum2, vs2);
vs2 = _mm_add_epi32(vsum2, vs1_0);
vs1_0 = vs1;
}
// At this point, we have partial sums stored in vs1 and vs2. There are AVX512 instructions that
// would allow us to sum these quickly (VP4DPWSSD). For now, just unpack and move on.
uint32_t ALIGNED_(16) s1_unpack[4];
uint32_t ALIGNED_(16) s2_unpack[4];
_mm_store_si128((__m128i*)s1_unpack, vs1);
_mm_store_si128((__m128i*)s2_unpack, vs2);
adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE);
adler %= BASE;
s1[3] = adler;
sum2 = (s2_unpack[0] % BASE) + (s2_unpack[1] % BASE) + (s2_unpack[2] % BASE) + (s2_unpack[3] % BASE);
sum2 %= BASE;
s2[3] = sum2;
}
while (len) {
len--;
adler += *buf++;
sum2 += adler;
}
adler %= BASE;
sum2 %= BASE;
/* return recombined sums */
return adler | (sum2 << 16);
}
#endif