mirror of
https://github.com/EQEmu/Server.git
synced 2025-12-12 01:11:29 +00:00
Forgot to git add so missed a bunch of stuff
This commit is contained in:
parent
80f1c65e1c
commit
ff13f162ce
82
common/compression.cpp
Normal file
82
common/compression.cpp
Normal file
@ -0,0 +1,82 @@
|
||||
#include "global_define.h"
|
||||
#include "types.h"
|
||||
#include <string.h>
|
||||
#include <zlib.h>
|
||||
|
||||
namespace EQEmu
|
||||
{
|
||||
uint32 EstimateDeflateBuffer(uint32 len) {
|
||||
z_stream zstream;
|
||||
memset(&zstream, 0, sizeof(zstream));
|
||||
|
||||
zstream.zalloc = Z_NULL;
|
||||
zstream.zfree = Z_NULL;
|
||||
zstream.opaque = Z_NULL;
|
||||
if (deflateInit(&zstream, Z_FINISH) != Z_OK)
|
||||
return 0;
|
||||
|
||||
return deflateBound(&zstream, len);
|
||||
}
|
||||
|
||||
uint32 DeflateData(const char *buffer, uint32 len, char *out_buffer, uint32 out_len_max) {
|
||||
z_stream zstream;
|
||||
memset(&zstream, 0, sizeof(zstream));
|
||||
int zerror;
|
||||
|
||||
zstream.next_in = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(buffer));
|
||||
zstream.avail_in = len;
|
||||
zstream.zalloc = Z_NULL;
|
||||
zstream.zfree = Z_NULL;
|
||||
zstream.opaque = Z_NULL;
|
||||
deflateInit(&zstream, Z_FINISH);
|
||||
|
||||
zstream.next_out = reinterpret_cast<unsigned char*>(out_buffer);
|
||||
zstream.avail_out = out_len_max;
|
||||
zerror = deflate(&zstream, Z_FINISH);
|
||||
|
||||
if (zerror == Z_STREAM_END)
|
||||
{
|
||||
deflateEnd(&zstream);
|
||||
return (uint32)zstream.total_out;
|
||||
}
|
||||
else
|
||||
{
|
||||
zerror = deflateEnd(&zstream);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint32 InflateData(const char* buffer, uint32 len, char* out_buffer, uint32 out_len_max) {
|
||||
z_stream zstream;
|
||||
int zerror = 0;
|
||||
int i;
|
||||
|
||||
zstream.next_in = const_cast<unsigned char*>(reinterpret_cast<const unsigned char*>(buffer));
|
||||
zstream.avail_in = len;
|
||||
zstream.next_out = reinterpret_cast<unsigned char*>(out_buffer);;
|
||||
zstream.avail_out = out_len_max;
|
||||
zstream.zalloc = Z_NULL;
|
||||
zstream.zfree = Z_NULL;
|
||||
zstream.opaque = Z_NULL;
|
||||
|
||||
i = inflateInit2(&zstream, 15);
|
||||
if (i != Z_OK) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
zerror = inflate(&zstream, Z_FINISH);
|
||||
if (zerror == Z_STREAM_END) {
|
||||
inflateEnd(&zstream);
|
||||
return zstream.total_out;
|
||||
}
|
||||
else {
|
||||
if (zerror == -4 && zstream.msg == 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
zerror = inflateEnd(&zstream);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
8
common/compression.h
Normal file
8
common/compression.h
Normal file
@ -0,0 +1,8 @@
|
||||
#pragma once
|
||||
|
||||
namespace EQEmu
|
||||
{
|
||||
uint32 EstimateDeflateBuffer(uint32 len);
|
||||
uint32 DeflateData(const char *buffer, uint32 len, char *out_buffer, uint32 out_len_max);
|
||||
uint32 InflateData(const char* buffer, uint32 len, char* out_buffer, uint32 out_len_max);
|
||||
}
|
||||
3
libs/format/.github/pull_request_template
vendored
Normal file
3
libs/format/.github/pull_request_template
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
<!---
|
||||
Please make sure you've followed the guidelines outlined in the CONTRIBUTING.rst file.
|
||||
--->
|
||||
19
libs/format/.gitignore
vendored
Normal file
19
libs/format/.gitignore
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
bin/
|
||||
/_CPack_Packages
|
||||
/doc/doxyxml
|
||||
/doc/html
|
||||
virtualenv
|
||||
/Testing
|
||||
/install_manifest.txt
|
||||
*~
|
||||
*.a
|
||||
*.so*
|
||||
*.zip
|
||||
cmake_install.cmake
|
||||
CPack*.cmake
|
||||
fmt-*.cmake
|
||||
CTestTestfile.cmake
|
||||
CMakeCache.txt
|
||||
CMakeFiles
|
||||
Makefile
|
||||
run-msbuild.bat
|
||||
11
libs/format/CONTRIBUTING.rst
Normal file
11
libs/format/CONTRIBUTING.rst
Normal file
@ -0,0 +1,11 @@
|
||||
Contributing to fmt
|
||||
===================
|
||||
|
||||
All C++ code must adhere to `Google C++ Style Guide
|
||||
<https://google.github.io/styleguide/cppguide.html>`_ with the following
|
||||
exceptions:
|
||||
|
||||
* Exceptions are permitted
|
||||
* snake_case should be used instead of UpperCamelCase for function names
|
||||
|
||||
Thanks for contributing!
|
||||
28
libs/format/doc/_static/breathe.css
vendored
Normal file
28
libs/format/doc/_static/breathe.css
vendored
Normal file
@ -0,0 +1,28 @@
|
||||
|
||||
/* -- breathe specific styles ----------------------------------------------- */
|
||||
|
||||
/* So enum value descriptions are displayed inline to the item */
|
||||
.breatheenumvalues li tt + p {
|
||||
display: inline;
|
||||
}
|
||||
|
||||
/* So parameter descriptions are displayed inline to the item */
|
||||
.breatheparameterlist li tt + p {
|
||||
display: inline;
|
||||
}
|
||||
|
||||
.container .breathe-sectiondef {
|
||||
width: inherit;
|
||||
}
|
||||
|
||||
.github-btn {
|
||||
border: 0;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.jumbotron {
|
||||
background-size: 100% 4px;
|
||||
background-repeat: repeat-y;
|
||||
color: white;
|
||||
text-align: center;
|
||||
}
|
||||
82
libs/format/fmt/container.h
Normal file
82
libs/format/fmt/container.h
Normal file
@ -0,0 +1,82 @@
|
||||
/*
|
||||
Formatting library for C++ - standard container utilities
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#ifndef FMT_CONTAINER_H_
|
||||
#define FMT_CONTAINER_H_
|
||||
|
||||
#include "format.h"
|
||||
|
||||
namespace fmt {
|
||||
|
||||
namespace internal {
|
||||
|
||||
/**
|
||||
\rst
|
||||
A "buffer" that appends data to a standard container (e.g. typically a
|
||||
``std::vector`` or ``std::basic_string``).
|
||||
\endrst
|
||||
*/
|
||||
template <typename Container>
|
||||
class ContainerBuffer : public Buffer<typename Container::value_type> {
|
||||
private:
|
||||
Container& container_;
|
||||
|
||||
protected:
|
||||
virtual void grow(std::size_t size) FMT_OVERRIDE {
|
||||
container_.resize(size);
|
||||
this->ptr_ = &container_[0];
|
||||
this->capacity_ = size;
|
||||
}
|
||||
|
||||
public:
|
||||
explicit ContainerBuffer(Container& container) : container_(container) {
|
||||
this->size_ = container_.size();
|
||||
if (this->size_ > 0) {
|
||||
this->ptr_ = &container_[0];
|
||||
this->capacity_ = this->size_;
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/**
|
||||
\rst
|
||||
This class template provides operations for formatting and appending data
|
||||
to a standard *container* like ``std::vector`` or ``std::basic_string``.
|
||||
|
||||
**Example**::
|
||||
|
||||
void vecformat(std::vector<char>& dest, fmt::BasicCStringRef<char> format,
|
||||
fmt::ArgList args) {
|
||||
fmt::BasicContainerWriter<std::vector<char> > appender(dest);
|
||||
appender.write(format, args);
|
||||
}
|
||||
FMT_VARIADIC(void, vecformat, std::vector<char>&,
|
||||
fmt::BasicCStringRef<char>);
|
||||
\endrst
|
||||
*/
|
||||
template <class Container>
|
||||
class BasicContainerWriter
|
||||
: public BasicWriter<typename Container::value_type> {
|
||||
private:
|
||||
internal::ContainerBuffer<Container> buffer_;
|
||||
|
||||
public:
|
||||
/**
|
||||
\rst
|
||||
Constructs a :class:`fmt::BasicContainerWriter` object.
|
||||
\endrst
|
||||
*/
|
||||
explicit BasicContainerWriter(Container& dest)
|
||||
: BasicWriter<typename Container::value_type>(buffer_), buffer_(dest) {}
|
||||
};
|
||||
|
||||
} // namespace fmt
|
||||
|
||||
#endif // FMT_CONTAINER_H_
|
||||
32
libs/format/fmt/printf.cc
Normal file
32
libs/format/fmt/printf.cc
Normal file
@ -0,0 +1,32 @@
|
||||
/*
|
||||
Formatting library for C++
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#include "format.h"
|
||||
#include "printf.h"
|
||||
|
||||
namespace fmt {
|
||||
|
||||
template <typename Char>
|
||||
void printf(BasicWriter<Char> &w, BasicCStringRef<Char> format, ArgList args);
|
||||
|
||||
FMT_FUNC int fprintf(std::FILE *f, CStringRef format, ArgList args) {
|
||||
MemoryWriter w;
|
||||
printf(w, format, args);
|
||||
std::size_t size = w.size();
|
||||
return std::fwrite(w.data(), 1, size, f) < size ? -1 : static_cast<int>(size);
|
||||
}
|
||||
|
||||
#ifndef FMT_HEADER_ONLY
|
||||
|
||||
template void PrintfFormatter<char>::format(CStringRef format);
|
||||
template void PrintfFormatter<wchar_t>::format(WCStringRef format);
|
||||
|
||||
#endif // FMT_HEADER_ONLY
|
||||
|
||||
} // namespace fmt
|
||||
603
libs/format/fmt/printf.h
Normal file
603
libs/format/fmt/printf.h
Normal file
@ -0,0 +1,603 @@
|
||||
/*
|
||||
Formatting library for C++
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#ifndef FMT_PRINTF_H_
|
||||
#define FMT_PRINTF_H_
|
||||
|
||||
#include <algorithm> // std::fill_n
|
||||
#include <limits> // std::numeric_limits
|
||||
|
||||
#include "ostream.h"
|
||||
|
||||
namespace fmt {
|
||||
namespace internal {
|
||||
|
||||
// Checks if a value fits in int - used to avoid warnings about comparing
|
||||
// signed and unsigned integers.
|
||||
template <bool IsSigned>
|
||||
struct IntChecker {
|
||||
template <typename T>
|
||||
static bool fits_in_int(T value) {
|
||||
unsigned max = std::numeric_limits<int>::max();
|
||||
return value <= max;
|
||||
}
|
||||
static bool fits_in_int(bool) { return true; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct IntChecker<true> {
|
||||
template <typename T>
|
||||
static bool fits_in_int(T value) {
|
||||
return value >= std::numeric_limits<int>::min() &&
|
||||
value <= std::numeric_limits<int>::max();
|
||||
}
|
||||
static bool fits_in_int(int) { return true; }
|
||||
};
|
||||
|
||||
class PrecisionHandler : public ArgVisitor<PrecisionHandler, int> {
|
||||
public:
|
||||
void report_unhandled_arg() {
|
||||
FMT_THROW(FormatError("precision is not integer"));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
int visit_any_int(T value) {
|
||||
if (!IntChecker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
|
||||
FMT_THROW(FormatError("number is too big"));
|
||||
return static_cast<int>(value);
|
||||
}
|
||||
};
|
||||
|
||||
// IsZeroInt::visit(arg) returns true iff arg is a zero integer.
|
||||
class IsZeroInt : public ArgVisitor<IsZeroInt, bool> {
|
||||
public:
|
||||
template <typename T>
|
||||
bool visit_any_int(T value) { return value == 0; }
|
||||
};
|
||||
|
||||
// returns the default type for format specific "%s"
|
||||
class DefaultType : public ArgVisitor<DefaultType, char> {
|
||||
public:
|
||||
char visit_char(int) { return 'c'; }
|
||||
|
||||
char visit_bool(bool) { return 's'; }
|
||||
|
||||
char visit_pointer(const void *) { return 'p'; }
|
||||
|
||||
template <typename T>
|
||||
char visit_any_int(T) { return 'd'; }
|
||||
|
||||
template <typename T>
|
||||
char visit_any_double(T) { return 'g'; }
|
||||
|
||||
char visit_unhandled_arg() { return 's'; }
|
||||
};
|
||||
|
||||
template <typename T, typename U>
|
||||
struct is_same {
|
||||
enum { value = 0 };
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct is_same<T, T> {
|
||||
enum { value = 1 };
|
||||
};
|
||||
|
||||
// An argument visitor that converts an integer argument to T for printf,
|
||||
// if T is an integral type. If T is void, the argument is converted to
|
||||
// corresponding signed or unsigned type depending on the type specifier:
|
||||
// 'd' and 'i' - signed, other - unsigned)
|
||||
template <typename T = void>
|
||||
class ArgConverter : public ArgVisitor<ArgConverter<T>, void> {
|
||||
private:
|
||||
internal::Arg &arg_;
|
||||
wchar_t type_;
|
||||
|
||||
FMT_DISALLOW_COPY_AND_ASSIGN(ArgConverter);
|
||||
|
||||
public:
|
||||
ArgConverter(internal::Arg &arg, wchar_t type)
|
||||
: arg_(arg), type_(type) {}
|
||||
|
||||
void visit_bool(bool value) {
|
||||
if (type_ != 's')
|
||||
visit_any_int(value);
|
||||
}
|
||||
|
||||
void visit_char(char value) {
|
||||
if (type_ != 's')
|
||||
visit_any_int(value);
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
void visit_any_int(U value) {
|
||||
bool is_signed = type_ == 'd' || type_ == 'i';
|
||||
if (type_ == 's') {
|
||||
is_signed = std::numeric_limits<U>::is_signed;
|
||||
}
|
||||
|
||||
using internal::Arg;
|
||||
typedef typename internal::Conditional<
|
||||
is_same<T, void>::value, U, T>::type TargetType;
|
||||
if (sizeof(TargetType) <= sizeof(int)) {
|
||||
// Extra casts are used to silence warnings.
|
||||
if (is_signed) {
|
||||
arg_.type = Arg::INT;
|
||||
arg_.int_value = static_cast<int>(static_cast<TargetType>(value));
|
||||
} else {
|
||||
arg_.type = Arg::UINT;
|
||||
typedef typename internal::MakeUnsigned<TargetType>::Type Unsigned;
|
||||
arg_.uint_value = static_cast<unsigned>(static_cast<Unsigned>(value));
|
||||
}
|
||||
} else {
|
||||
if (is_signed) {
|
||||
arg_.type = Arg::LONG_LONG;
|
||||
// glibc's printf doesn't sign extend arguments of smaller types:
|
||||
// std::printf("%lld", -42); // prints "4294967254"
|
||||
// but we don't have to do the same because it's a UB.
|
||||
arg_.long_long_value = static_cast<LongLong>(value);
|
||||
} else {
|
||||
arg_.type = Arg::ULONG_LONG;
|
||||
arg_.ulong_long_value =
|
||||
static_cast<typename internal::MakeUnsigned<U>::Type>(value);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// Converts an integer argument to char for printf.
|
||||
class CharConverter : public ArgVisitor<CharConverter, void> {
|
||||
private:
|
||||
internal::Arg &arg_;
|
||||
|
||||
FMT_DISALLOW_COPY_AND_ASSIGN(CharConverter);
|
||||
|
||||
public:
|
||||
explicit CharConverter(internal::Arg &arg) : arg_(arg) {}
|
||||
|
||||
template <typename T>
|
||||
void visit_any_int(T value) {
|
||||
arg_.type = internal::Arg::CHAR;
|
||||
arg_.int_value = static_cast<char>(value);
|
||||
}
|
||||
};
|
||||
|
||||
// Checks if an argument is a valid printf width specifier and sets
|
||||
// left alignment if it is negative.
|
||||
class WidthHandler : public ArgVisitor<WidthHandler, unsigned> {
|
||||
private:
|
||||
FormatSpec &spec_;
|
||||
|
||||
FMT_DISALLOW_COPY_AND_ASSIGN(WidthHandler);
|
||||
|
||||
public:
|
||||
explicit WidthHandler(FormatSpec &spec) : spec_(spec) {}
|
||||
|
||||
void report_unhandled_arg() {
|
||||
FMT_THROW(FormatError("width is not integer"));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
unsigned visit_any_int(T value) {
|
||||
typedef typename internal::IntTraits<T>::MainType UnsignedType;
|
||||
UnsignedType width = static_cast<UnsignedType>(value);
|
||||
if (internal::is_negative(value)) {
|
||||
spec_.align_ = ALIGN_LEFT;
|
||||
width = 0 - width;
|
||||
}
|
||||
unsigned int_max = std::numeric_limits<int>::max();
|
||||
if (width > int_max)
|
||||
FMT_THROW(FormatError("number is too big"));
|
||||
return static_cast<unsigned>(width);
|
||||
}
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/**
|
||||
\rst
|
||||
A ``printf`` argument formatter based on the `curiously recurring template
|
||||
pattern <http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern>`_.
|
||||
|
||||
To use `~fmt::BasicPrintfArgFormatter` define a subclass that implements some
|
||||
or all of the visit methods with the same signatures as the methods in
|
||||
`~fmt::ArgVisitor`, for example, `~fmt::ArgVisitor::visit_int()`.
|
||||
Pass the subclass as the *Impl* template parameter. When a formatting
|
||||
function processes an argument, it will dispatch to a visit method
|
||||
specific to the argument type. For example, if the argument type is
|
||||
``double`` then the `~fmt::ArgVisitor::visit_double()` method of a subclass
|
||||
will be called. If the subclass doesn't contain a method with this signature,
|
||||
then a corresponding method of `~fmt::BasicPrintfArgFormatter` or its
|
||||
superclass will be called.
|
||||
\endrst
|
||||
*/
|
||||
template <typename Impl, typename Char, typename Spec>
|
||||
class BasicPrintfArgFormatter :
|
||||
public internal::ArgFormatterBase<Impl, Char, Spec> {
|
||||
private:
|
||||
void write_null_pointer() {
|
||||
this->spec().type_ = 0;
|
||||
this->write("(nil)");
|
||||
}
|
||||
|
||||
typedef internal::ArgFormatterBase<Impl, Char, Spec> Base;
|
||||
|
||||
public:
|
||||
/**
|
||||
\rst
|
||||
Constructs an argument formatter object.
|
||||
*writer* is a reference to the output writer and *spec* contains format
|
||||
specifier information for standard argument types.
|
||||
\endrst
|
||||
*/
|
||||
BasicPrintfArgFormatter(BasicWriter<Char> &w, Spec &s)
|
||||
: internal::ArgFormatterBase<Impl, Char, Spec>(w, s) {}
|
||||
|
||||
/** Formats an argument of type ``bool``. */
|
||||
void visit_bool(bool value) {
|
||||
Spec &fmt_spec = this->spec();
|
||||
if (fmt_spec.type_ != 's')
|
||||
return this->visit_any_int(value);
|
||||
fmt_spec.type_ = 0;
|
||||
this->write(value);
|
||||
}
|
||||
|
||||
/** Formats a character. */
|
||||
void visit_char(int value) {
|
||||
const Spec &fmt_spec = this->spec();
|
||||
BasicWriter<Char> &w = this->writer();
|
||||
if (fmt_spec.type_ && fmt_spec.type_ != 'c')
|
||||
w.write_int(value, fmt_spec);
|
||||
typedef typename BasicWriter<Char>::CharPtr CharPtr;
|
||||
CharPtr out = CharPtr();
|
||||
if (fmt_spec.width_ > 1) {
|
||||
Char fill = ' ';
|
||||
out = w.grow_buffer(fmt_spec.width_);
|
||||
if (fmt_spec.align_ != ALIGN_LEFT) {
|
||||
std::fill_n(out, fmt_spec.width_ - 1, fill);
|
||||
out += fmt_spec.width_ - 1;
|
||||
} else {
|
||||
std::fill_n(out + 1, fmt_spec.width_ - 1, fill);
|
||||
}
|
||||
} else {
|
||||
out = w.grow_buffer(1);
|
||||
}
|
||||
*out = static_cast<Char>(value);
|
||||
}
|
||||
|
||||
/** Formats a null-terminated C string. */
|
||||
void visit_cstring(const char *value) {
|
||||
if (value)
|
||||
Base::visit_cstring(value);
|
||||
else if (this->spec().type_ == 'p')
|
||||
write_null_pointer();
|
||||
else
|
||||
this->write("(null)");
|
||||
}
|
||||
|
||||
/** Formats a pointer. */
|
||||
void visit_pointer(const void *value) {
|
||||
if (value)
|
||||
return Base::visit_pointer(value);
|
||||
this->spec().type_ = 0;
|
||||
write_null_pointer();
|
||||
}
|
||||
|
||||
/** Formats an argument of a custom (user-defined) type. */
|
||||
void visit_custom(internal::Arg::CustomValue c) {
|
||||
BasicFormatter<Char> formatter(ArgList(), this->writer());
|
||||
const Char format_str[] = {'}', 0};
|
||||
const Char *format = format_str;
|
||||
c.format(&formatter, c.value, &format);
|
||||
}
|
||||
};
|
||||
|
||||
/** The default printf argument formatter. */
|
||||
template <typename Char>
|
||||
class PrintfArgFormatter :
|
||||
public BasicPrintfArgFormatter<PrintfArgFormatter<Char>, Char, FormatSpec> {
|
||||
public:
|
||||
/** Constructs an argument formatter object. */
|
||||
PrintfArgFormatter(BasicWriter<Char> &w, FormatSpec &s)
|
||||
: BasicPrintfArgFormatter<PrintfArgFormatter<Char>, Char, FormatSpec>(w, s) {}
|
||||
};
|
||||
|
||||
/** This template formats data and writes the output to a writer. */
|
||||
template <typename Char, typename ArgFormatter = PrintfArgFormatter<Char> >
|
||||
class PrintfFormatter : private internal::FormatterBase {
|
||||
private:
|
||||
BasicWriter<Char> &writer_;
|
||||
|
||||
void parse_flags(FormatSpec &spec, const Char *&s);
|
||||
|
||||
// Returns the argument with specified index or, if arg_index is equal
|
||||
// to the maximum unsigned value, the next argument.
|
||||
internal::Arg get_arg(
|
||||
const Char *s,
|
||||
unsigned arg_index = (std::numeric_limits<unsigned>::max)());
|
||||
|
||||
// Parses argument index, flags and width and returns the argument index.
|
||||
unsigned parse_header(const Char *&s, FormatSpec &spec);
|
||||
|
||||
public:
|
||||
/**
|
||||
\rst
|
||||
Constructs a ``PrintfFormatter`` object. References to the arguments and
|
||||
the writer are stored in the formatter object so make sure they have
|
||||
appropriate lifetimes.
|
||||
\endrst
|
||||
*/
|
||||
explicit PrintfFormatter(const ArgList &al, BasicWriter<Char> &w)
|
||||
: FormatterBase(al), writer_(w) {}
|
||||
|
||||
/** Formats stored arguments and writes the output to the writer. */
|
||||
void format(BasicCStringRef<Char> format_str);
|
||||
};
|
||||
|
||||
template <typename Char, typename AF>
|
||||
void PrintfFormatter<Char, AF>::parse_flags(FormatSpec &spec, const Char *&s) {
|
||||
for (;;) {
|
||||
switch (*s++) {
|
||||
case '-':
|
||||
spec.align_ = ALIGN_LEFT;
|
||||
break;
|
||||
case '+':
|
||||
spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
|
||||
break;
|
||||
case '0':
|
||||
spec.fill_ = '0';
|
||||
break;
|
||||
case ' ':
|
||||
spec.flags_ |= SIGN_FLAG;
|
||||
break;
|
||||
case '#':
|
||||
spec.flags_ |= HASH_FLAG;
|
||||
break;
|
||||
default:
|
||||
--s;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Char, typename AF>
|
||||
internal::Arg PrintfFormatter<Char, AF>::get_arg(const Char *s,
|
||||
unsigned arg_index) {
|
||||
(void)s;
|
||||
const char *error = FMT_NULL;
|
||||
internal::Arg arg = arg_index == std::numeric_limits<unsigned>::max() ?
|
||||
next_arg(error) : FormatterBase::get_arg(arg_index - 1, error);
|
||||
if (error)
|
||||
FMT_THROW(FormatError(!*s ? "invalid format string" : error));
|
||||
return arg;
|
||||
}
|
||||
|
||||
template <typename Char, typename AF>
|
||||
unsigned PrintfFormatter<Char, AF>::parse_header(
|
||||
const Char *&s, FormatSpec &spec) {
|
||||
unsigned arg_index = std::numeric_limits<unsigned>::max();
|
||||
Char c = *s;
|
||||
if (c >= '0' && c <= '9') {
|
||||
// Parse an argument index (if followed by '$') or a width possibly
|
||||
// preceded with '0' flag(s).
|
||||
unsigned value = internal::parse_nonnegative_int(s);
|
||||
if (*s == '$') { // value is an argument index
|
||||
++s;
|
||||
arg_index = value;
|
||||
} else {
|
||||
if (c == '0')
|
||||
spec.fill_ = '0';
|
||||
if (value != 0) {
|
||||
// Nonzero value means that we parsed width and don't need to
|
||||
// parse it or flags again, so return now.
|
||||
spec.width_ = value;
|
||||
return arg_index;
|
||||
}
|
||||
}
|
||||
}
|
||||
parse_flags(spec, s);
|
||||
// Parse width.
|
||||
if (*s >= '0' && *s <= '9') {
|
||||
spec.width_ = internal::parse_nonnegative_int(s);
|
||||
} else if (*s == '*') {
|
||||
++s;
|
||||
spec.width_ = internal::WidthHandler(spec).visit(get_arg(s));
|
||||
}
|
||||
return arg_index;
|
||||
}
|
||||
|
||||
template <typename Char, typename AF>
|
||||
void PrintfFormatter<Char, AF>::format(BasicCStringRef<Char> format_str) {
|
||||
const Char *start = format_str.c_str();
|
||||
const Char *s = start;
|
||||
while (*s) {
|
||||
Char c = *s++;
|
||||
if (c != '%') continue;
|
||||
if (*s == c) {
|
||||
write(writer_, start, s);
|
||||
start = ++s;
|
||||
continue;
|
||||
}
|
||||
write(writer_, start, s - 1);
|
||||
|
||||
FormatSpec spec;
|
||||
spec.align_ = ALIGN_RIGHT;
|
||||
|
||||
// Parse argument index, flags and width.
|
||||
unsigned arg_index = parse_header(s, spec);
|
||||
|
||||
// Parse precision.
|
||||
if (*s == '.') {
|
||||
++s;
|
||||
if ('0' <= *s && *s <= '9') {
|
||||
spec.precision_ = static_cast<int>(internal::parse_nonnegative_int(s));
|
||||
} else if (*s == '*') {
|
||||
++s;
|
||||
spec.precision_ = internal::PrecisionHandler().visit(get_arg(s));
|
||||
} else {
|
||||
spec.precision_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
using internal::Arg;
|
||||
Arg arg = get_arg(s, arg_index);
|
||||
if (spec.flag(HASH_FLAG) && internal::IsZeroInt().visit(arg))
|
||||
spec.flags_ &= ~internal::to_unsigned<int>(HASH_FLAG);
|
||||
if (spec.fill_ == '0') {
|
||||
if (arg.type <= Arg::LAST_NUMERIC_TYPE)
|
||||
spec.align_ = ALIGN_NUMERIC;
|
||||
else
|
||||
spec.fill_ = ' '; // Ignore '0' flag for non-numeric types.
|
||||
}
|
||||
|
||||
// Parse length and convert the argument to the required type.
|
||||
using internal::ArgConverter;
|
||||
switch (*s++) {
|
||||
case 'h':
|
||||
if (*s == 'h')
|
||||
ArgConverter<signed char>(arg, *++s).visit(arg);
|
||||
else
|
||||
ArgConverter<short>(arg, *s).visit(arg);
|
||||
break;
|
||||
case 'l':
|
||||
if (*s == 'l')
|
||||
ArgConverter<fmt::LongLong>(arg, *++s).visit(arg);
|
||||
else
|
||||
ArgConverter<long>(arg, *s).visit(arg);
|
||||
break;
|
||||
case 'j':
|
||||
ArgConverter<intmax_t>(arg, *s).visit(arg);
|
||||
break;
|
||||
case 'z':
|
||||
ArgConverter<std::size_t>(arg, *s).visit(arg);
|
||||
break;
|
||||
case 't':
|
||||
ArgConverter<std::ptrdiff_t>(arg, *s).visit(arg);
|
||||
break;
|
||||
case 'L':
|
||||
// printf produces garbage when 'L' is omitted for long double, no
|
||||
// need to do the same.
|
||||
break;
|
||||
default:
|
||||
--s;
|
||||
ArgConverter<void>(arg, *s).visit(arg);
|
||||
}
|
||||
|
||||
// Parse type.
|
||||
if (!*s)
|
||||
FMT_THROW(FormatError("invalid format string"));
|
||||
spec.type_ = static_cast<char>(*s++);
|
||||
|
||||
if (spec.type_ == 's') {
|
||||
// set the format type to the default if 's' is specified
|
||||
spec.type_ = internal::DefaultType().visit(arg);
|
||||
}
|
||||
|
||||
if (arg.type <= Arg::LAST_INTEGER_TYPE) {
|
||||
// Normalize type.
|
||||
switch (spec.type_) {
|
||||
case 'i': case 'u':
|
||||
spec.type_ = 'd';
|
||||
break;
|
||||
case 'c':
|
||||
// TODO: handle wchar_t
|
||||
internal::CharConverter(arg).visit(arg);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
start = s;
|
||||
|
||||
// Format argument.
|
||||
AF(writer_, spec).visit(arg);
|
||||
}
|
||||
write(writer_, start, s);
|
||||
}
|
||||
|
||||
inline void printf(Writer &w, CStringRef format, ArgList args) {
|
||||
PrintfFormatter<char>(args, w).format(format);
|
||||
}
|
||||
FMT_VARIADIC(void, printf, Writer &, CStringRef)
|
||||
|
||||
inline void printf(WWriter &w, WCStringRef format, ArgList args) {
|
||||
PrintfFormatter<wchar_t>(args, w).format(format);
|
||||
}
|
||||
FMT_VARIADIC(void, printf, WWriter &, WCStringRef)
|
||||
|
||||
/**
|
||||
\rst
|
||||
Formats arguments and returns the result as a string.
|
||||
|
||||
**Example**::
|
||||
|
||||
std::string message = fmt::sprintf("The answer is %d", 42);
|
||||
\endrst
|
||||
*/
|
||||
inline std::string sprintf(CStringRef format, ArgList args) {
|
||||
MemoryWriter w;
|
||||
printf(w, format, args);
|
||||
return w.str();
|
||||
}
|
||||
FMT_VARIADIC(std::string, sprintf, CStringRef)
|
||||
|
||||
inline std::wstring sprintf(WCStringRef format, ArgList args) {
|
||||
WMemoryWriter w;
|
||||
printf(w, format, args);
|
||||
return w.str();
|
||||
}
|
||||
FMT_VARIADIC_W(std::wstring, sprintf, WCStringRef)
|
||||
|
||||
/**
|
||||
\rst
|
||||
Prints formatted data to the file *f*.
|
||||
|
||||
**Example**::
|
||||
|
||||
fmt::fprintf(stderr, "Don't %s!", "panic");
|
||||
\endrst
|
||||
*/
|
||||
FMT_API int fprintf(std::FILE *f, CStringRef format, ArgList args);
|
||||
FMT_VARIADIC(int, fprintf, std::FILE *, CStringRef)
|
||||
|
||||
/**
|
||||
\rst
|
||||
Prints formatted data to ``stdout``.
|
||||
|
||||
**Example**::
|
||||
|
||||
fmt::printf("Elapsed time: %.2f seconds", 1.23);
|
||||
\endrst
|
||||
*/
|
||||
inline int printf(CStringRef format, ArgList args) {
|
||||
return fprintf(stdout, format, args);
|
||||
}
|
||||
FMT_VARIADIC(int, printf, CStringRef)
|
||||
|
||||
/**
|
||||
\rst
|
||||
Prints formatted data to the stream *os*.
|
||||
|
||||
**Example**::
|
||||
|
||||
fprintf(cerr, "Don't %s!", "panic");
|
||||
\endrst
|
||||
*/
|
||||
inline int fprintf(std::ostream &os, CStringRef format_str, ArgList args) {
|
||||
MemoryWriter w;
|
||||
printf(w, format_str, args);
|
||||
internal::write(os, w);
|
||||
return static_cast<int>(w.size());
|
||||
}
|
||||
FMT_VARIADIC(int, fprintf, std::ostream &, CStringRef)
|
||||
} // namespace fmt
|
||||
|
||||
#ifdef FMT_HEADER_ONLY
|
||||
# include "printf.cc"
|
||||
#endif
|
||||
|
||||
#endif // FMT_PRINTF_H_
|
||||
126
libs/format/fmt/string.h
Normal file
126
libs/format/fmt/string.h
Normal file
@ -0,0 +1,126 @@
|
||||
/*
|
||||
Formatting library for C++ - string utilities
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#ifndef FMT_STRING_H_
|
||||
#define FMT_STRING_H_
|
||||
|
||||
#include "format.h"
|
||||
|
||||
namespace fmt {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// A buffer that stores data in ``std::basic_string``.
|
||||
template <typename Char, typename Allocator = std::allocator<Char> >
|
||||
class StringBuffer : public Buffer<Char> {
|
||||
public:
|
||||
typedef std::basic_string<Char, std::char_traits<Char>, Allocator> StringType;
|
||||
|
||||
private:
|
||||
StringType data_;
|
||||
|
||||
protected:
|
||||
virtual void grow(std::size_t size) FMT_OVERRIDE {
|
||||
data_.resize(size);
|
||||
this->ptr_ = &data_[0];
|
||||
this->capacity_ = size;
|
||||
}
|
||||
|
||||
public:
|
||||
explicit StringBuffer(const Allocator &allocator = Allocator())
|
||||
: data_(allocator) {}
|
||||
|
||||
// Moves the data to ``str`` clearing the buffer.
|
||||
void move_to(StringType &str) {
|
||||
data_.resize(this->size_);
|
||||
str.swap(data_);
|
||||
this->capacity_ = this->size_ = 0;
|
||||
this->ptr_ = FMT_NULL;
|
||||
}
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/**
|
||||
\rst
|
||||
This class template provides operations for formatting and writing data
|
||||
into a character stream. The output is stored in a ``std::basic_string``
|
||||
that grows dynamically.
|
||||
|
||||
You can use one of the following typedefs for common character types
|
||||
and the standard allocator:
|
||||
|
||||
+---------------+----------------------------+
|
||||
| Type | Definition |
|
||||
+===============+============================+
|
||||
| StringWriter | BasicStringWriter<char> |
|
||||
+---------------+----------------------------+
|
||||
| WStringWriter | BasicStringWriter<wchar_t> |
|
||||
+---------------+----------------------------+
|
||||
|
||||
**Example**::
|
||||
|
||||
StringWriter out;
|
||||
out << "The answer is " << 42 << "\n";
|
||||
|
||||
This will write the following output to the ``out`` object:
|
||||
|
||||
.. code-block:: none
|
||||
|
||||
The answer is 42
|
||||
|
||||
The output can be moved to a ``std::basic_string`` with ``out.move_to()``.
|
||||
\endrst
|
||||
*/
|
||||
template <typename Char, typename Allocator = std::allocator<Char> >
|
||||
class BasicStringWriter : public BasicWriter<Char> {
|
||||
private:
|
||||
internal::StringBuffer<Char, Allocator> buffer_;
|
||||
|
||||
public:
|
||||
/**
|
||||
\rst
|
||||
Constructs a :class:`fmt::BasicStringWriter` object.
|
||||
\endrst
|
||||
*/
|
||||
explicit BasicStringWriter(const Allocator &allocator = Allocator())
|
||||
: BasicWriter<Char>(buffer_), buffer_(allocator) {}
|
||||
|
||||
/**
|
||||
\rst
|
||||
Moves the buffer content to *str* clearing the buffer.
|
||||
\endrst
|
||||
*/
|
||||
void move_to(std::basic_string<Char, std::char_traits<Char>, Allocator> &str) {
|
||||
buffer_.move_to(str);
|
||||
}
|
||||
};
|
||||
|
||||
typedef BasicStringWriter<char> StringWriter;
|
||||
typedef BasicStringWriter<wchar_t> WStringWriter;
|
||||
|
||||
/**
|
||||
\rst
|
||||
Converts *value* to ``std::string`` using the default format for type *T*.
|
||||
|
||||
**Example**::
|
||||
|
||||
#include "fmt/string.h"
|
||||
|
||||
std::string answer = fmt::to_string(42);
|
||||
\endrst
|
||||
*/
|
||||
template <typename T>
|
||||
std::string to_string(const T &value) {
|
||||
fmt::MemoryWriter w;
|
||||
w << value;
|
||||
return w.str();
|
||||
}
|
||||
}
|
||||
|
||||
#endif // FMT_STRING_H_
|
||||
235
libs/format/support/manage.py
Normal file
235
libs/format/support/manage.py
Normal file
@ -0,0 +1,235 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
"""Manage site and releases.
|
||||
|
||||
Usage:
|
||||
manage.py release [<branch>]
|
||||
manage.py site
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import datetime, docopt, fileinput, json, os
|
||||
import re, requests, shutil, sys, tempfile
|
||||
from contextlib import contextmanager
|
||||
from distutils.version import LooseVersion
|
||||
from subprocess import check_call
|
||||
|
||||
|
||||
class Git:
|
||||
def __init__(self, dir):
|
||||
self.dir = dir
|
||||
|
||||
def call(self, method, args, **kwargs):
|
||||
return check_call(['git', method] + list(args), **kwargs)
|
||||
|
||||
def add(self, *args):
|
||||
return self.call('add', args, cwd=self.dir)
|
||||
|
||||
def checkout(self, *args):
|
||||
return self.call('checkout', args, cwd=self.dir)
|
||||
|
||||
def clean(self, *args):
|
||||
return self.call('clean', args, cwd=self.dir)
|
||||
|
||||
def clone(self, *args):
|
||||
return self.call('clone', list(args) + [self.dir])
|
||||
|
||||
def commit(self, *args):
|
||||
return self.call('commit', args, cwd=self.dir)
|
||||
|
||||
def pull(self, *args):
|
||||
return self.call('pull', args, cwd=self.dir)
|
||||
|
||||
def push(self, *args):
|
||||
return self.call('push', args, cwd=self.dir)
|
||||
|
||||
def reset(self, *args):
|
||||
return self.call('reset', args, cwd=self.dir)
|
||||
|
||||
def update(self, *args):
|
||||
clone = not os.path.exists(self.dir)
|
||||
if clone:
|
||||
self.clone(*args)
|
||||
return clone
|
||||
|
||||
|
||||
def clean_checkout(repo, branch):
|
||||
repo.clean('-f', '-d')
|
||||
repo.reset('--hard')
|
||||
repo.checkout(branch)
|
||||
|
||||
|
||||
class Runner:
|
||||
def __init__(self, cwd):
|
||||
self.cwd = cwd
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
kwargs['cwd'] = kwargs.get('cwd', self.cwd)
|
||||
check_call(args, **kwargs)
|
||||
|
||||
|
||||
def create_build_env():
|
||||
"""Create a build environment."""
|
||||
class Env:
|
||||
pass
|
||||
env = Env()
|
||||
|
||||
# Import the documentation build module.
|
||||
env.fmt_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.insert(0, os.path.join(env.fmt_dir, 'doc'))
|
||||
import build
|
||||
|
||||
env.build_dir = 'build'
|
||||
|
||||
# Virtualenv and repos are cached to speed up builds.
|
||||
build.create_build_env(os.path.join(env.build_dir, 'virtualenv'))
|
||||
|
||||
env.fmt_repo = Git(os.path.join(env.build_dir, 'fmt'))
|
||||
return env
|
||||
|
||||
|
||||
@contextmanager
|
||||
def rewrite(filename):
|
||||
class Buffer:
|
||||
pass
|
||||
buffer = Buffer()
|
||||
if not os.path.exists(filename):
|
||||
buffer.data = ''
|
||||
yield buffer
|
||||
return
|
||||
with open(filename) as f:
|
||||
buffer.data = f.read()
|
||||
yield buffer
|
||||
with open(filename, 'w') as f:
|
||||
f.write(buffer.data)
|
||||
|
||||
|
||||
fmt_repo_url = 'git@github.com:fmtlib/fmt'
|
||||
|
||||
|
||||
def update_site(env):
|
||||
env.fmt_repo.update(fmt_repo_url)
|
||||
|
||||
doc_repo = Git(os.path.join(env.build_dir, 'fmtlib.github.io'))
|
||||
doc_repo.update('git@github.com:fmtlib/fmtlib.github.io')
|
||||
|
||||
for version in ['1.0.0', '1.1.0', '2.0.0', '3.0.0']:
|
||||
clean_checkout(env.fmt_repo, version)
|
||||
target_doc_dir = os.path.join(env.fmt_repo.dir, 'doc')
|
||||
# Remove the old theme.
|
||||
for entry in os.listdir(target_doc_dir):
|
||||
path = os.path.join(target_doc_dir, entry)
|
||||
if os.path.isdir(path):
|
||||
shutil.rmtree(path)
|
||||
# Copy the new theme.
|
||||
for entry in ['_static', '_templates', 'basic-bootstrap', 'bootstrap',
|
||||
'conf.py', 'fmt.less']:
|
||||
src = os.path.join(env.fmt_dir, 'doc', entry)
|
||||
dst = os.path.join(target_doc_dir, entry)
|
||||
copy = shutil.copytree if os.path.isdir(src) else shutil.copyfile
|
||||
copy(src, dst)
|
||||
# Rename index to contents.
|
||||
contents = os.path.join(target_doc_dir, 'contents.rst')
|
||||
if not os.path.exists(contents):
|
||||
os.rename(os.path.join(target_doc_dir, 'index.rst'), contents)
|
||||
# Fix issues in reference.rst/api.rst.
|
||||
for filename in ['reference.rst', 'api.rst']:
|
||||
pattern = re.compile('doxygenfunction.. (bin|oct|hexu|hex)$', re.M)
|
||||
with rewrite(os.path.join(target_doc_dir, filename)) as b:
|
||||
b.data = b.data.replace('std::ostream &', 'std::ostream&')
|
||||
b.data = re.sub(pattern, r'doxygenfunction:: \1(int)', b.data)
|
||||
b.data = b.data.replace('std::FILE*', 'std::FILE *')
|
||||
b.data = b.data.replace('unsigned int', 'unsigned')
|
||||
# Fix a broken link in index.rst.
|
||||
index = os.path.join(target_doc_dir, 'index.rst')
|
||||
with rewrite(index) as b:
|
||||
b.data = b.data.replace(
|
||||
'doc/latest/index.html#format-string-syntax', 'syntax.html')
|
||||
# Build the docs.
|
||||
html_dir = os.path.join(env.build_dir, 'html')
|
||||
if os.path.exists(html_dir):
|
||||
shutil.rmtree(html_dir)
|
||||
include_dir = env.fmt_repo.dir
|
||||
if LooseVersion(version) >= LooseVersion('3.0.0'):
|
||||
include_dir = os.path.join(include_dir, 'fmt')
|
||||
import build
|
||||
build.build_docs(version, doc_dir=target_doc_dir,
|
||||
include_dir=include_dir, work_dir=env.build_dir)
|
||||
shutil.rmtree(os.path.join(html_dir, '.doctrees'))
|
||||
# Create symlinks for older versions.
|
||||
for link, target in {'index': 'contents', 'api': 'reference'}.items():
|
||||
link = os.path.join(html_dir, link) + '.html'
|
||||
target += '.html'
|
||||
if os.path.exists(os.path.join(html_dir, target)) and \
|
||||
not os.path.exists(link):
|
||||
os.symlink(target, link)
|
||||
# Copy docs to the website.
|
||||
version_doc_dir = os.path.join(doc_repo.dir, version)
|
||||
shutil.rmtree(version_doc_dir)
|
||||
shutil.move(html_dir, version_doc_dir)
|
||||
|
||||
|
||||
def release(args):
|
||||
env = create_build_env()
|
||||
fmt_repo = env.fmt_repo
|
||||
|
||||
branch = args.get('<branch>')
|
||||
if branch is None:
|
||||
branch = 'master'
|
||||
if not fmt_repo.update('-b', branch, fmt_repo_url):
|
||||
clean_checkout(fmt_repo, branch)
|
||||
|
||||
# Convert changelog from RST to GitHub-flavored Markdown and get the
|
||||
# version.
|
||||
changelog = 'ChangeLog.rst'
|
||||
changelog_path = os.path.join(fmt_repo.dir, changelog)
|
||||
import rst2md
|
||||
changes, version = rst2md.convert(changelog_path)
|
||||
cmakelists = 'CMakeLists.txt'
|
||||
for line in fileinput.input(os.path.join(fmt_repo.dir, cmakelists),
|
||||
inplace=True):
|
||||
prefix = 'set(FMT_VERSION '
|
||||
if line.startswith(prefix):
|
||||
line = prefix + version + ')\n'
|
||||
sys.stdout.write(line)
|
||||
|
||||
# Update the version in the changelog.
|
||||
title_len = 0
|
||||
for line in fileinput.input(changelog_path, inplace=True):
|
||||
if line.decode('utf-8').startswith(version + ' - TBD'):
|
||||
line = version + ' - ' + datetime.date.today().isoformat()
|
||||
title_len = len(line)
|
||||
line += '\n'
|
||||
elif title_len:
|
||||
line = '-' * title_len + '\n'
|
||||
title_len = 0
|
||||
sys.stdout.write(line)
|
||||
# TODO: add new version to manage.py
|
||||
fmt_repo.checkout('-B', 'release')
|
||||
fmt_repo.add(changelog, cmakelists)
|
||||
fmt_repo.commit('-m', 'Update version')
|
||||
|
||||
# Build the docs and package.
|
||||
run = Runner(fmt_repo.dir)
|
||||
run('cmake', '.')
|
||||
run('make', 'doc', 'package_source')
|
||||
|
||||
update_site(env)
|
||||
|
||||
# Create a release on GitHub.
|
||||
fmt_repo.push('origin', 'release')
|
||||
r = requests.post('https://api.github.com/repos/fmtlib/fmt/releases',
|
||||
params={'access_token': os.getenv('FMT_TOKEN')},
|
||||
data=json.dumps({'tag_name': version,
|
||||
'target_commitish': 'release',
|
||||
'body': changes, 'draft': True}))
|
||||
if r.status_code != 201:
|
||||
raise Exception('Failed to create a release ' + str(r))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = docopt.docopt(__doc__)
|
||||
if args.get('release'):
|
||||
release(args)
|
||||
elif args.get('site'):
|
||||
update_site(create_build_env())
|
||||
127
libs/format/support/rst2md.py
Normal file
127
libs/format/support/rst2md.py
Normal file
@ -0,0 +1,127 @@
|
||||
# reStructuredText (RST) to GitHub-flavored Markdown converter
|
||||
|
||||
import re
|
||||
from docutils import core, nodes, writers
|
||||
|
||||
|
||||
def is_github_ref(node):
|
||||
return re.match('https://github.com/.*/(issues|pull)/.*', node['refuri'])
|
||||
|
||||
|
||||
class Translator(nodes.NodeVisitor):
|
||||
def __init__(self, document):
|
||||
nodes.NodeVisitor.__init__(self, document)
|
||||
self.output = ''
|
||||
self.indent = 0
|
||||
self.preserve_newlines = False
|
||||
|
||||
def write(self, text):
|
||||
self.output += text.replace('\n', '\n' + ' ' * self.indent)
|
||||
|
||||
def visit_document(self, node):
|
||||
pass
|
||||
|
||||
def depart_document(self, node):
|
||||
pass
|
||||
|
||||
def visit_section(self, node):
|
||||
pass
|
||||
|
||||
def depart_section(self, node):
|
||||
# Skip all sections except the first one.
|
||||
raise nodes.StopTraversal
|
||||
|
||||
def visit_title(self, node):
|
||||
self.version = re.match(r'(\d+\.\d+\.\d+).*', node.children[0]).group(1)
|
||||
raise nodes.SkipChildren
|
||||
|
||||
def depart_title(self, node):
|
||||
pass
|
||||
|
||||
def visit_Text(self, node):
|
||||
if not self.preserve_newlines:
|
||||
node = node.replace('\n', ' ')
|
||||
self.write(node)
|
||||
|
||||
def depart_Text(self, node):
|
||||
pass
|
||||
|
||||
def visit_bullet_list(self, node):
|
||||
pass
|
||||
|
||||
def depart_bullet_list(self, node):
|
||||
pass
|
||||
|
||||
def visit_list_item(self, node):
|
||||
self.write('* ')
|
||||
self.indent += 2
|
||||
|
||||
def depart_list_item(self, node):
|
||||
self.indent -= 2
|
||||
self.write('\n\n')
|
||||
|
||||
def visit_paragraph(self, node):
|
||||
pass
|
||||
|
||||
def depart_paragraph(self, node):
|
||||
pass
|
||||
|
||||
def visit_reference(self, node):
|
||||
if not is_github_ref(node):
|
||||
self.write('[')
|
||||
|
||||
def depart_reference(self, node):
|
||||
if not is_github_ref(node):
|
||||
self.write('](' + node['refuri'] + ')')
|
||||
|
||||
def visit_target(self, node):
|
||||
pass
|
||||
|
||||
def depart_target(self, node):
|
||||
pass
|
||||
|
||||
def visit_literal(self, node):
|
||||
self.write('`')
|
||||
|
||||
def depart_literal(self, node):
|
||||
self.write('`')
|
||||
|
||||
def visit_literal_block(self, node):
|
||||
self.write('\n\n```')
|
||||
if 'c++' in node['classes']:
|
||||
self.write('c++')
|
||||
self.write('\n')
|
||||
self.preserve_newlines = True
|
||||
|
||||
def depart_literal_block(self, node):
|
||||
self.write('\n```\n')
|
||||
self.preserve_newlines = False
|
||||
|
||||
def visit_inline(self, node):
|
||||
pass
|
||||
|
||||
def depart_inline(self, node):
|
||||
pass
|
||||
|
||||
def visit_image(self, node):
|
||||
self.write('')
|
||||
|
||||
def depart_image(self, node):
|
||||
pass
|
||||
|
||||
|
||||
class MDWriter(writers.Writer):
|
||||
"""GitHub-flavored markdown writer"""
|
||||
|
||||
supported = ('md',)
|
||||
"""Formats this writer supports."""
|
||||
|
||||
def translate(self):
|
||||
translator = Translator(self.document)
|
||||
self.document.walkabout(translator)
|
||||
self.output = (translator.output, translator.version)
|
||||
|
||||
|
||||
def convert(rst_path):
|
||||
"""Converts RST file to Markdown."""
|
||||
return core.publish_file(source_path=rst_path, writer=MDWriter())
|
||||
94
libs/format/test/container-test.cc
Normal file
94
libs/format/test/container-test.cc
Normal file
@ -0,0 +1,94 @@
|
||||
/*
|
||||
Tests of container utilities
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#include "fmt/container.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using fmt::internal::ContainerBuffer;
|
||||
|
||||
TEST(ContainerBufferTest, Empty) {
|
||||
std::string data;
|
||||
ContainerBuffer<std::string> buffer(data);
|
||||
EXPECT_EQ(0u, buffer.size());
|
||||
EXPECT_EQ(0u, buffer.capacity());
|
||||
}
|
||||
|
||||
TEST(ContainerBufferTest, Reserve) {
|
||||
std::string data;
|
||||
ContainerBuffer<std::string> buffer(data);
|
||||
std::size_t capacity = std::string().capacity() + 10;
|
||||
buffer.reserve(capacity);
|
||||
EXPECT_EQ(0u, buffer.size());
|
||||
EXPECT_EQ(capacity, buffer.capacity());
|
||||
}
|
||||
|
||||
TEST(ContainerBufferTest, Resize) {
|
||||
std::string data;
|
||||
ContainerBuffer<std::string> buffer(data);
|
||||
std::size_t size = std::string().capacity() + 10;
|
||||
buffer.resize(size);
|
||||
EXPECT_EQ(size, buffer.size());
|
||||
EXPECT_EQ(size, buffer.capacity());
|
||||
}
|
||||
|
||||
TEST(ContainerBufferTest, Append) {
|
||||
std::string data("Why so");
|
||||
const std::string serious(" serious");
|
||||
ContainerBuffer<std::string> buffer(data);
|
||||
buffer.append(serious.c_str(), serious.c_str() + serious.length());
|
||||
EXPECT_EQ("Why so serious", data);
|
||||
EXPECT_EQ(data.length(), buffer.size());
|
||||
}
|
||||
|
||||
TEST(BasicContainerWriterTest, String) {
|
||||
std::string data;
|
||||
fmt::BasicContainerWriter<std::string> out(data);
|
||||
out << "The answer is " << 42 << "\n";
|
||||
EXPECT_EQ("The answer is 42\n", data);
|
||||
EXPECT_EQ(17u, out.size());
|
||||
}
|
||||
|
||||
TEST(BasicContainerWriterTest, WString) {
|
||||
std::wstring data;
|
||||
fmt::BasicContainerWriter<std::wstring> out(data);
|
||||
out << "The answer is " << 42 << "\n";
|
||||
EXPECT_EQ(L"The answer is 42\n", data);
|
||||
EXPECT_EQ(17u, out.size());
|
||||
}
|
||||
|
||||
TEST(BasicContainerWriterTest, Vector) {
|
||||
std::vector<char> data;
|
||||
fmt::BasicContainerWriter<std::vector<char> > out(data);
|
||||
out << "The answer is " << 42 << "\n";
|
||||
EXPECT_EQ(17u, data.size());
|
||||
EXPECT_EQ(out.size(), data.size());
|
||||
}
|
||||
|
||||
TEST(BasicContainerWriterTest, StringAppend) {
|
||||
std::string data("The");
|
||||
fmt::BasicContainerWriter<std::string> out(data);
|
||||
EXPECT_EQ(3u, data.size());
|
||||
EXPECT_EQ(3u, out.size());
|
||||
out << " answer is " << 42 << "\n";
|
||||
EXPECT_EQ("The answer is 42\n", data);
|
||||
EXPECT_EQ(17u, out.size());
|
||||
}
|
||||
|
||||
TEST(BasicContainerWriterTest, VectorAppend) {
|
||||
std::vector<char> data;
|
||||
data.push_back('T');
|
||||
data.push_back('h');
|
||||
data.push_back('e');
|
||||
fmt::BasicContainerWriter<std::vector<char> > out(data);
|
||||
EXPECT_EQ(3u, data.size());
|
||||
EXPECT_EQ(3u, out.size());
|
||||
out << " answer is " << 42 << "\n";
|
||||
EXPECT_EQ(17u, data.size());
|
||||
EXPECT_EQ(17u, out.size());
|
||||
}
|
||||
68
libs/format/test/custom-formatter-test.cc
Normal file
68
libs/format/test/custom-formatter-test.cc
Normal file
@ -0,0 +1,68 @@
|
||||
/*
|
||||
Custom argument formatter tests
|
||||
|
||||
Copyright (c) 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#include "fmt/printf.h"
|
||||
#include "gtest-extra.h"
|
||||
|
||||
using fmt::BasicPrintfArgFormatter;
|
||||
|
||||
// A custom argument formatter that doesn't print `-` for floating-point values
|
||||
// rounded to 0.
|
||||
class CustomArgFormatter
|
||||
: public fmt::BasicArgFormatter<CustomArgFormatter, char> {
|
||||
public:
|
||||
CustomArgFormatter(fmt::BasicFormatter<char, CustomArgFormatter> &f,
|
||||
fmt::FormatSpec &s, const char *fmt)
|
||||
: fmt::BasicArgFormatter<CustomArgFormatter, char>(f, s, fmt) {}
|
||||
|
||||
void visit_double(double value) {
|
||||
if (round(value * pow(10, spec().precision())) == 0)
|
||||
value = 0;
|
||||
fmt::BasicArgFormatter<CustomArgFormatter, char>::visit_double(value);
|
||||
}
|
||||
};
|
||||
|
||||
// A custom argument formatter that doesn't print `-` for floating-point values
|
||||
// rounded to 0.
|
||||
class CustomPrintfArgFormatter :
|
||||
public BasicPrintfArgFormatter<CustomPrintfArgFormatter, char> {
|
||||
public:
|
||||
typedef BasicPrintfArgFormatter<CustomPrintfArgFormatter, char> Base;
|
||||
|
||||
CustomPrintfArgFormatter(fmt::BasicWriter<char> &w, fmt::FormatSpec &spec)
|
||||
: Base(w, spec) {}
|
||||
|
||||
void visit_double(double value) {
|
||||
if (round(value * pow(10, spec().precision())) == 0)
|
||||
value = 0;
|
||||
Base::visit_double(value);
|
||||
}
|
||||
};
|
||||
|
||||
std::string custom_format(const char *format_str, fmt::ArgList args) {
|
||||
fmt::MemoryWriter writer;
|
||||
// Pass custom argument formatter as a template arg to BasicFormatter.
|
||||
fmt::BasicFormatter<char, CustomArgFormatter> formatter(args, writer);
|
||||
formatter.format(format_str);
|
||||
return writer.str();
|
||||
}
|
||||
FMT_VARIADIC(std::string, custom_format, const char *)
|
||||
|
||||
std::string custom_sprintf(const char* format_str, fmt::ArgList args){
|
||||
fmt::MemoryWriter writer;
|
||||
fmt::PrintfFormatter<char, CustomPrintfArgFormatter> formatter(args, writer);
|
||||
formatter.format(format_str);
|
||||
return writer.str();
|
||||
}
|
||||
FMT_VARIADIC(std::string, custom_sprintf, const char*);
|
||||
|
||||
TEST(CustomFormatterTest, Format) {
|
||||
EXPECT_EQ("0.00", custom_format("{:.2f}", -.00001));
|
||||
EXPECT_EQ("0.00", custom_sprintf("%.2f", -.00001));
|
||||
}
|
||||
80
libs/format/test/string-test.cc
Normal file
80
libs/format/test/string-test.cc
Normal file
@ -0,0 +1,80 @@
|
||||
/*
|
||||
Tests of string utilities
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
|
||||
#include "fmt/string.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
using fmt::internal::StringBuffer;
|
||||
|
||||
TEST(StringBufferTest, Empty) {
|
||||
StringBuffer<char> buffer;
|
||||
EXPECT_EQ(0u, buffer.size());
|
||||
EXPECT_EQ(0u, buffer.capacity());
|
||||
std::string data;
|
||||
// std::string may have initial capacity.
|
||||
std::size_t capacity = data.capacity();
|
||||
buffer.move_to(data);
|
||||
EXPECT_EQ("", data);
|
||||
EXPECT_EQ(capacity, data.capacity());
|
||||
}
|
||||
|
||||
TEST(StringBufferTest, Reserve) {
|
||||
StringBuffer<char> buffer;
|
||||
std::size_t capacity = std::string().capacity() + 10;
|
||||
buffer.reserve(capacity);
|
||||
EXPECT_EQ(0u, buffer.size());
|
||||
EXPECT_EQ(capacity, buffer.capacity());
|
||||
std::string data;
|
||||
buffer.move_to(data);
|
||||
EXPECT_EQ("", data);
|
||||
}
|
||||
|
||||
TEST(StringBufferTest, Resize) {
|
||||
StringBuffer<char> buffer;
|
||||
std::size_t size = std::string().capacity() + 10;
|
||||
buffer.resize(size);
|
||||
EXPECT_EQ(size, buffer.size());
|
||||
EXPECT_EQ(size, buffer.capacity());
|
||||
std::string data;
|
||||
buffer.move_to(data);
|
||||
EXPECT_EQ(size, data.size());
|
||||
}
|
||||
|
||||
TEST(StringBufferTest, MoveTo) {
|
||||
StringBuffer<char> buffer;
|
||||
std::size_t size = std::string().capacity() + 10;
|
||||
buffer.resize(size);
|
||||
const char *p = &buffer[0];
|
||||
std::string data;
|
||||
buffer.move_to(data);
|
||||
EXPECT_EQ(p, &data[0]);
|
||||
EXPECT_EQ(0u, buffer.size());
|
||||
EXPECT_EQ(0u, buffer.capacity());
|
||||
}
|
||||
|
||||
TEST(StringWriterTest, MoveTo) {
|
||||
fmt::StringWriter out;
|
||||
out << "The answer is " << 42 << "\n";
|
||||
std::string s;
|
||||
out.move_to(s);
|
||||
EXPECT_EQ("The answer is 42\n", s);
|
||||
EXPECT_EQ(0u, out.size());
|
||||
}
|
||||
|
||||
TEST(StringWriterTest, WString) {
|
||||
fmt::WStringWriter out;
|
||||
out << "The answer is " << 42 << "\n";
|
||||
std::wstring s;
|
||||
out.move_to(s);
|
||||
EXPECT_EQ(L"The answer is 42\n", s);
|
||||
}
|
||||
|
||||
TEST(StringTest, ToString) {
|
||||
EXPECT_EQ("42", fmt::to_string(42));
|
||||
}
|
||||
60
libs/format/test/time-test.cc
Normal file
60
libs/format/test/time-test.cc
Normal file
@ -0,0 +1,60 @@
|
||||
/*
|
||||
Time formatting tests
|
||||
|
||||
Copyright (c) 2012 - 2016, Victor Zverovich
|
||||
All rights reserved.
|
||||
|
||||
For the license information refer to format.h.
|
||||
*/
|
||||
#ifdef WIN32
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#endif
|
||||
|
||||
#include "gmock/gmock.h"
|
||||
#include "fmt/time.h"
|
||||
|
||||
TEST(TimeTest, Format) {
|
||||
std::tm tm = std::tm();
|
||||
tm.tm_year = 116;
|
||||
tm.tm_mon = 3;
|
||||
tm.tm_mday = 25;
|
||||
EXPECT_EQ("The date is 2016-04-25.",
|
||||
fmt::format("The date is {:%Y-%m-%d}.", tm));
|
||||
}
|
||||
|
||||
TEST(TimeTest, GrowBuffer) {
|
||||
std::string s = "{:";
|
||||
for (int i = 0; i < 30; ++i)
|
||||
s += "%c";
|
||||
s += "}\n";
|
||||
std::time_t t = std::time(0);
|
||||
fmt::format(s, *std::localtime(&t));
|
||||
}
|
||||
|
||||
TEST(TimeTest, EmptyResult) {
|
||||
EXPECT_EQ("", fmt::format("{}", std::tm()));
|
||||
}
|
||||
|
||||
bool EqualTime(const std::tm &lhs, const std::tm &rhs) {
|
||||
return lhs.tm_sec == rhs.tm_sec &&
|
||||
lhs.tm_min == rhs.tm_min &&
|
||||
lhs.tm_hour == rhs.tm_hour &&
|
||||
lhs.tm_mday == rhs.tm_mday &&
|
||||
lhs.tm_mon == rhs.tm_mon &&
|
||||
lhs.tm_year == rhs.tm_year &&
|
||||
lhs.tm_wday == rhs.tm_wday &&
|
||||
lhs.tm_yday == rhs.tm_yday &&
|
||||
lhs.tm_isdst == rhs.tm_isdst;
|
||||
}
|
||||
|
||||
TEST(TimeTest, LocalTime) {
|
||||
std::time_t t = std::time(0);
|
||||
std::tm tm = *std::localtime(&t);
|
||||
EXPECT_TRUE(EqualTime(tm, fmt::localtime(t)));
|
||||
}
|
||||
|
||||
TEST(TimeTest, GMTime) {
|
||||
std::time_t t = std::time(0);
|
||||
std::tm tm = *std::gmtime(&t);
|
||||
EXPECT_TRUE(EqualTime(tm, fmt::gmtime(t)));
|
||||
}
|
||||
77
libs/recast/CMakeLists.txt
Normal file
77
libs/recast/CMakeLists.txt
Normal file
@ -0,0 +1,77 @@
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
|
||||
|
||||
SET(recast_navigation_sources
|
||||
detour/src/DetourAlloc.cpp
|
||||
detour/src/DetourAssert.cpp
|
||||
detour/src/DetourCommon.cpp
|
||||
detour/src/DetourNavMesh.cpp
|
||||
detour/src/DetourNavMeshBuilder.cpp
|
||||
detour/src/DetourNavMeshQuery.cpp
|
||||
detour/src/DetourNode.cpp
|
||||
recast/src/Recast.cpp
|
||||
recast/src/RecastAlloc.cpp
|
||||
recast/src/RecastArea.cpp
|
||||
recast/src/RecastAssert.cpp
|
||||
recast/src/RecastContour.cpp
|
||||
recast/src/RecastFilter.cpp
|
||||
recast/src/RecastLayers.cpp
|
||||
recast/src/RecastMesh.cpp
|
||||
recast/src/RecastMeshDetail.cpp
|
||||
recast/src/RecastRasterization.cpp
|
||||
recast/src/RecastRegion.cpp
|
||||
)
|
||||
|
||||
SET(recast_navigation_headers
|
||||
detour/include/DetourAlloc.h
|
||||
detour/include/DetourAssert.h
|
||||
detour/include/DetourCommon.h
|
||||
detour/include/DetourMath.h
|
||||
detour/include/DetourNavMesh.h
|
||||
detour/include/DetourNavMeshBuilder.h
|
||||
detour/include/DetourNavMeshQuery.h
|
||||
detour/include/DetourNode.h
|
||||
detour/include/DetourStatus.h
|
||||
recast/include/Recast.h
|
||||
recast/include/RecastAlloc.h
|
||||
recast/include/RecastAssert.h
|
||||
)
|
||||
|
||||
SOURCE_GROUP(Detour FILES
|
||||
detour/src/DetourAlloc.cpp
|
||||
detour/src/DetourAssert.cpp
|
||||
detour/src/DetourCommon.cpp
|
||||
detour/src/DetourNavMesh.cpp
|
||||
detour/src/DetourNavMeshBuilder.cpp
|
||||
detour/src/DetourNavMeshQuery.cpp
|
||||
detour/src/DetourNode.cpp
|
||||
detour/include/DetourAlloc.h
|
||||
detour/include/DetourAssert.h
|
||||
detour/include/DetourCommon.h
|
||||
detour/include/DetourMath.h
|
||||
detour/include/DetourNavMesh.h
|
||||
detour/include/DetourNavMeshBuilder.h
|
||||
detour/include/DetourNavMeshQuery.h
|
||||
detour/include/DetourNode.h
|
||||
detour/include/DetourStatus.h
|
||||
)
|
||||
|
||||
SOURCE_GROUP(Recast FILES
|
||||
recast/src/Recast.cpp
|
||||
recast/src/RecastAlloc.cpp
|
||||
recast/src/RecastArea.cpp
|
||||
recast/src/RecastAssert.cpp
|
||||
recast/src/RecastContour.cpp
|
||||
recast/src/RecastFilter.cpp
|
||||
recast/src/RecastLayers.cpp
|
||||
recast/src/RecastMesh.cpp
|
||||
recast/src/RecastMeshDetail.cpp
|
||||
recast/src/RecastRasterization.cpp
|
||||
recast/src/RecastRegion.cpp
|
||||
recast/include/Recast.h
|
||||
recast/include/RecastAlloc.h
|
||||
recast/include/RecastAssert.h
|
||||
)
|
||||
|
||||
ADD_LIBRARY(recast_navigation ${recast_navigation_sources} ${recast_navigation_headers})
|
||||
|
||||
SET(LIBRARY_OUTPUT_PATH ${PROJECT_BINARY_DIR}/lib)
|
||||
223
libs/recast/debug_utils/include/DebugDraw.h
Normal file
223
libs/recast/debug_utils/include/DebugDraw.h
Normal file
@ -0,0 +1,223 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DEBUGDRAW_H
|
||||
#define DEBUGDRAW_H
|
||||
|
||||
// Some math headers don't have PI defined.
|
||||
static const float DU_PI = 3.14159265f;
|
||||
|
||||
enum duDebugDrawPrimitives
|
||||
{
|
||||
DU_DRAW_POINTS,
|
||||
DU_DRAW_LINES,
|
||||
DU_DRAW_TRIS,
|
||||
DU_DRAW_QUADS,
|
||||
};
|
||||
|
||||
/// Abstract debug draw interface.
|
||||
struct duDebugDraw
|
||||
{
|
||||
virtual ~duDebugDraw() = 0;
|
||||
|
||||
virtual void depthMask(bool state) = 0;
|
||||
|
||||
virtual void texture(bool state) = 0;
|
||||
|
||||
/// Begin drawing primitives.
|
||||
/// @param prim [in] primitive type to draw, one of rcDebugDrawPrimitives.
|
||||
/// @param size [in] size of a primitive, applies to point size and line width only.
|
||||
virtual void begin(duDebugDrawPrimitives prim, float size = 1.0f) = 0;
|
||||
|
||||
/// Submit a vertex
|
||||
/// @param pos [in] position of the verts.
|
||||
/// @param color [in] color of the verts.
|
||||
virtual void vertex(const float* pos, unsigned int color) = 0;
|
||||
|
||||
/// Submit a vertex
|
||||
/// @param x,y,z [in] position of the verts.
|
||||
/// @param color [in] color of the verts.
|
||||
virtual void vertex(const float x, const float y, const float z, unsigned int color) = 0;
|
||||
|
||||
/// Submit a vertex
|
||||
/// @param pos [in] position of the verts.
|
||||
/// @param color [in] color of the verts.
|
||||
virtual void vertex(const float* pos, unsigned int color, const float* uv) = 0;
|
||||
|
||||
/// Submit a vertex
|
||||
/// @param x,y,z [in] position of the verts.
|
||||
/// @param color [in] color of the verts.
|
||||
virtual void vertex(const float x, const float y, const float z, unsigned int color, const float u, const float v) = 0;
|
||||
|
||||
/// End drawing primitives.
|
||||
virtual void end() = 0;
|
||||
|
||||
/// Compute a color for given area.
|
||||
virtual unsigned int areaToCol(unsigned int area);
|
||||
};
|
||||
|
||||
inline unsigned int duRGBA(int r, int g, int b, int a)
|
||||
{
|
||||
return ((unsigned int)r) | ((unsigned int)g << 8) | ((unsigned int)b << 16) | ((unsigned int)a << 24);
|
||||
}
|
||||
|
||||
inline unsigned int duRGBAf(float fr, float fg, float fb, float fa)
|
||||
{
|
||||
unsigned char r = (unsigned char)(fr*255.0f);
|
||||
unsigned char g = (unsigned char)(fg*255.0f);
|
||||
unsigned char b = (unsigned char)(fb*255.0f);
|
||||
unsigned char a = (unsigned char)(fa*255.0f);
|
||||
return duRGBA(r,g,b,a);
|
||||
}
|
||||
|
||||
unsigned int duIntToCol(int i, int a);
|
||||
void duIntToCol(int i, float* col);
|
||||
|
||||
inline unsigned int duMultCol(const unsigned int col, const unsigned int d)
|
||||
{
|
||||
const unsigned int r = col & 0xff;
|
||||
const unsigned int g = (col >> 8) & 0xff;
|
||||
const unsigned int b = (col >> 16) & 0xff;
|
||||
const unsigned int a = (col >> 24) & 0xff;
|
||||
return duRGBA((r*d) >> 8, (g*d) >> 8, (b*d) >> 8, a);
|
||||
}
|
||||
|
||||
inline unsigned int duDarkenCol(unsigned int col)
|
||||
{
|
||||
return ((col >> 1) & 0x007f7f7f) | (col & 0xff000000);
|
||||
}
|
||||
|
||||
inline unsigned int duLerpCol(unsigned int ca, unsigned int cb, unsigned int u)
|
||||
{
|
||||
const unsigned int ra = ca & 0xff;
|
||||
const unsigned int ga = (ca >> 8) & 0xff;
|
||||
const unsigned int ba = (ca >> 16) & 0xff;
|
||||
const unsigned int aa = (ca >> 24) & 0xff;
|
||||
const unsigned int rb = cb & 0xff;
|
||||
const unsigned int gb = (cb >> 8) & 0xff;
|
||||
const unsigned int bb = (cb >> 16) & 0xff;
|
||||
const unsigned int ab = (cb >> 24) & 0xff;
|
||||
|
||||
unsigned int r = (ra*(255-u) + rb*u)/255;
|
||||
unsigned int g = (ga*(255-u) + gb*u)/255;
|
||||
unsigned int b = (ba*(255-u) + bb*u)/255;
|
||||
unsigned int a = (aa*(255-u) + ab*u)/255;
|
||||
return duRGBA(r,g,b,a);
|
||||
}
|
||||
|
||||
inline unsigned int duTransCol(unsigned int c, unsigned int a)
|
||||
{
|
||||
return (a<<24) | (c & 0x00ffffff);
|
||||
}
|
||||
|
||||
|
||||
void duCalcBoxColors(unsigned int* colors, unsigned int colTop, unsigned int colSide);
|
||||
|
||||
void duDebugDrawCylinderWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col, const float lineWidth);
|
||||
|
||||
void duDebugDrawBoxWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col, const float lineWidth);
|
||||
|
||||
void duDebugDrawArc(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1, const float h,
|
||||
const float as0, const float as1, unsigned int col, const float lineWidth);
|
||||
|
||||
void duDebugDrawArrow(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1,
|
||||
const float as0, const float as1, unsigned int col, const float lineWidth);
|
||||
|
||||
void duDebugDrawCircle(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float r, unsigned int col, const float lineWidth);
|
||||
|
||||
void duDebugDrawCross(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float size, unsigned int col, const float lineWidth);
|
||||
|
||||
void duDebugDrawBox(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, const unsigned int* fcol);
|
||||
|
||||
void duDebugDrawCylinder(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col);
|
||||
|
||||
void duDebugDrawGridXZ(struct duDebugDraw* dd, const float ox, const float oy, const float oz,
|
||||
const int w, const int h, const float size,
|
||||
const unsigned int col, const float lineWidth);
|
||||
|
||||
|
||||
// Versions without begin/end, can be used to draw multiple primitives.
|
||||
void duAppendCylinderWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col);
|
||||
|
||||
void duAppendBoxWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col);
|
||||
|
||||
void duAppendBoxPoints(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col);
|
||||
|
||||
void duAppendArc(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1, const float h,
|
||||
const float as0, const float as1, unsigned int col);
|
||||
|
||||
void duAppendArrow(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1,
|
||||
const float as0, const float as1, unsigned int col);
|
||||
|
||||
void duAppendCircle(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float r, unsigned int col);
|
||||
|
||||
void duAppendCross(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float size, unsigned int col);
|
||||
|
||||
void duAppendBox(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, const unsigned int* fcol);
|
||||
|
||||
void duAppendCylinder(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col);
|
||||
|
||||
|
||||
class duDisplayList : public duDebugDraw
|
||||
{
|
||||
float* m_pos;
|
||||
unsigned int* m_color;
|
||||
int m_size;
|
||||
int m_cap;
|
||||
|
||||
bool m_depthMask;
|
||||
duDebugDrawPrimitives m_prim;
|
||||
float m_primSize;
|
||||
|
||||
void resize(int cap);
|
||||
|
||||
public:
|
||||
duDisplayList(int cap = 512);
|
||||
~duDisplayList();
|
||||
virtual void depthMask(bool state);
|
||||
virtual void begin(duDebugDrawPrimitives prim, float size = 1.0f);
|
||||
virtual void vertex(const float x, const float y, const float z, unsigned int color);
|
||||
virtual void vertex(const float* pos, unsigned int color);
|
||||
virtual void end();
|
||||
void clear();
|
||||
void draw(struct duDebugDraw* dd);
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
duDisplayList(const duDisplayList&);
|
||||
duDisplayList& operator=(const duDisplayList&);
|
||||
};
|
||||
|
||||
|
||||
#endif // DEBUGDRAW_H
|
||||
48
libs/recast/debug_utils/include/DetourDebugDraw.h
Normal file
48
libs/recast/debug_utils/include/DetourDebugDraw.h
Normal file
@ -0,0 +1,48 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURDEBUGDRAW_H
|
||||
#define DETOURDEBUGDRAW_H
|
||||
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourNavMeshQuery.h"
|
||||
#include "DetourTileCacheBuilder.h"
|
||||
|
||||
enum DrawNavMeshFlags
|
||||
{
|
||||
DU_DRAWNAVMESH_OFFMESHCONS = 0x01,
|
||||
DU_DRAWNAVMESH_CLOSEDLIST = 0x02,
|
||||
DU_DRAWNAVMESH_COLOR_TILES = 0x04,
|
||||
};
|
||||
|
||||
void duDebugDrawNavMesh(struct duDebugDraw* dd, const dtNavMesh& mesh, unsigned char flags);
|
||||
void duDebugDrawNavMeshWithClosedList(struct duDebugDraw* dd, const dtNavMesh& mesh, const dtNavMeshQuery& query, unsigned char flags);
|
||||
void duDebugDrawNavMeshNodes(struct duDebugDraw* dd, const dtNavMeshQuery& query);
|
||||
void duDebugDrawNavMeshBVTree(struct duDebugDraw* dd, const dtNavMesh& mesh);
|
||||
void duDebugDrawNavMeshPortals(struct duDebugDraw* dd, const dtNavMesh& mesh);
|
||||
void duDebugDrawNavMeshPolysWithFlags(struct duDebugDraw* dd, const dtNavMesh& mesh, const unsigned short polyFlags, const unsigned int col);
|
||||
void duDebugDrawNavMeshPoly(struct duDebugDraw* dd, const dtNavMesh& mesh, dtPolyRef ref, const unsigned int col);
|
||||
|
||||
void duDebugDrawTileCacheLayerAreas(struct duDebugDraw* dd, const dtTileCacheLayer& layer, const float cs, const float ch);
|
||||
void duDebugDrawTileCacheLayerRegions(struct duDebugDraw* dd, const dtTileCacheLayer& layer, const float cs, const float ch);
|
||||
void duDebugDrawTileCacheContours(duDebugDraw* dd, const struct dtTileCacheContourSet& lcset,
|
||||
const float* orig, const float cs, const float ch);
|
||||
void duDebugDrawTileCachePolyMesh(duDebugDraw* dd, const struct dtTileCachePolyMesh& lmesh,
|
||||
const float* orig, const float cs, const float ch);
|
||||
|
||||
#endif // DETOURDEBUGDRAW_H
|
||||
42
libs/recast/debug_utils/include/RecastDebugDraw.h
Normal file
42
libs/recast/debug_utils/include/RecastDebugDraw.h
Normal file
@ -0,0 +1,42 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef RECAST_DEBUGDRAW_H
|
||||
#define RECAST_DEBUGDRAW_H
|
||||
|
||||
void duDebugDrawTriMesh(struct duDebugDraw* dd, const float* verts, int nverts, const int* tris, const float* normals, int ntris, const unsigned char* flags, const float texScale);
|
||||
void duDebugDrawTriMeshSlope(struct duDebugDraw* dd, const float* verts, int nverts, const int* tris, const float* normals, int ntris, const float walkableSlopeAngle, const float texScale);
|
||||
|
||||
void duDebugDrawHeightfieldSolid(struct duDebugDraw* dd, const struct rcHeightfield& hf);
|
||||
void duDebugDrawHeightfieldWalkable(struct duDebugDraw* dd, const struct rcHeightfield& hf);
|
||||
|
||||
void duDebugDrawCompactHeightfieldSolid(struct duDebugDraw* dd, const struct rcCompactHeightfield& chf);
|
||||
void duDebugDrawCompactHeightfieldRegions(struct duDebugDraw* dd, const struct rcCompactHeightfield& chf);
|
||||
void duDebugDrawCompactHeightfieldDistance(struct duDebugDraw* dd, const struct rcCompactHeightfield& chf);
|
||||
|
||||
void duDebugDrawHeightfieldLayer(duDebugDraw* dd, const struct rcHeightfieldLayer& layer, const int idx);
|
||||
void duDebugDrawHeightfieldLayers(duDebugDraw* dd, const struct rcHeightfieldLayerSet& lset);
|
||||
void duDebugDrawHeightfieldLayersRegions(duDebugDraw* dd, const struct rcHeightfieldLayerSet& lset);
|
||||
|
||||
void duDebugDrawRegionConnections(struct duDebugDraw* dd, const struct rcContourSet& cset, const float alpha = 1.0f);
|
||||
void duDebugDrawRawContours(struct duDebugDraw* dd, const struct rcContourSet& cset, const float alpha = 1.0f);
|
||||
void duDebugDrawContours(struct duDebugDraw* dd, const struct rcContourSet& cset, const float alpha = 1.0f);
|
||||
void duDebugDrawPolyMesh(struct duDebugDraw* dd, const struct rcPolyMesh& mesh);
|
||||
void duDebugDrawPolyMeshDetail(struct duDebugDraw* dd, const struct rcPolyMeshDetail& dmesh);
|
||||
|
||||
#endif // RECAST_DEBUGDRAW_H
|
||||
43
libs/recast/debug_utils/include/RecastDump.h
Normal file
43
libs/recast/debug_utils/include/RecastDump.h
Normal file
@ -0,0 +1,43 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef RECAST_DUMP_H
|
||||
#define RECAST_DUMP_H
|
||||
|
||||
struct duFileIO
|
||||
{
|
||||
virtual ~duFileIO() = 0;
|
||||
virtual bool isWriting() const = 0;
|
||||
virtual bool isReading() const = 0;
|
||||
virtual bool write(const void* ptr, const size_t size) = 0;
|
||||
virtual bool read(void* ptr, const size_t size) = 0;
|
||||
};
|
||||
|
||||
bool duDumpPolyMeshToObj(struct rcPolyMesh& pmesh, duFileIO* io);
|
||||
bool duDumpPolyMeshDetailToObj(struct rcPolyMeshDetail& dmesh, duFileIO* io);
|
||||
|
||||
bool duDumpContourSet(struct rcContourSet& cset, duFileIO* io);
|
||||
bool duReadContourSet(struct rcContourSet& cset, duFileIO* io);
|
||||
|
||||
bool duDumpCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io);
|
||||
bool duReadCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io);
|
||||
|
||||
void duLogBuildTimes(rcContext& ctx, const int totalTileUsec);
|
||||
|
||||
|
||||
#endif // RECAST_DUMP_H
|
||||
612
libs/recast/debug_utils/src/DebugDraw.cpp
Normal file
612
libs/recast/debug_utils/src/DebugDraw.cpp
Normal file
@ -0,0 +1,612 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <string.h>
|
||||
#include "DebugDraw.h"
|
||||
#include "DetourMath.h"
|
||||
#include "DetourNavMesh.h"
|
||||
|
||||
|
||||
duDebugDraw::~duDebugDraw()
|
||||
{
|
||||
// Empty
|
||||
}
|
||||
|
||||
unsigned int duDebugDraw::areaToCol(unsigned int area)
|
||||
{
|
||||
if (area == 0)
|
||||
{
|
||||
// Treat zero area type as default.
|
||||
return duRGBA(0, 192, 255, 255);
|
||||
}
|
||||
else
|
||||
{
|
||||
return duIntToCol(area, 255);
|
||||
}
|
||||
}
|
||||
|
||||
inline int bit(int a, int b)
|
||||
{
|
||||
return (a & (1 << b)) >> b;
|
||||
}
|
||||
|
||||
unsigned int duIntToCol(int i, int a)
|
||||
{
|
||||
int r = bit(i, 1) + bit(i, 3) * 2 + 1;
|
||||
int g = bit(i, 2) + bit(i, 4) * 2 + 1;
|
||||
int b = bit(i, 0) + bit(i, 5) * 2 + 1;
|
||||
return duRGBA(r*63,g*63,b*63,a);
|
||||
}
|
||||
|
||||
void duIntToCol(int i, float* col)
|
||||
{
|
||||
int r = bit(i, 0) + bit(i, 3) * 2 + 1;
|
||||
int g = bit(i, 1) + bit(i, 4) * 2 + 1;
|
||||
int b = bit(i, 2) + bit(i, 5) * 2 + 1;
|
||||
col[0] = 1 - r*63.0f/255.0f;
|
||||
col[1] = 1 - g*63.0f/255.0f;
|
||||
col[2] = 1 - b*63.0f/255.0f;
|
||||
}
|
||||
|
||||
void duCalcBoxColors(unsigned int* colors, unsigned int colTop, unsigned int colSide)
|
||||
{
|
||||
if (!colors) return;
|
||||
|
||||
colors[0] = duMultCol(colTop, 250);
|
||||
colors[1] = duMultCol(colSide, 140);
|
||||
colors[2] = duMultCol(colSide, 165);
|
||||
colors[3] = duMultCol(colSide, 217);
|
||||
colors[4] = duMultCol(colSide, 165);
|
||||
colors[5] = duMultCol(colSide, 217);
|
||||
}
|
||||
|
||||
void duDebugDrawCylinderWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
duAppendCylinderWire(dd, minx,miny,minz, maxx,maxy,maxz, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawBoxWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
duAppendBoxWire(dd, minx,miny,minz, maxx,maxy,maxz, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawArc(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1, const float h,
|
||||
const float as0, const float as1, unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
duAppendArc(dd, x0,y0,z0, x1,y1,z1, h, as0, as1, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawArrow(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1,
|
||||
const float as0, const float as1, unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
duAppendArrow(dd, x0,y0,z0, x1,y1,z1, as0, as1, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawCircle(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float r, unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
duAppendCircle(dd, x,y,z, r, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawCross(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float size, unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
duAppendCross(dd, x,y,z, size, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawBox(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, const unsigned int* fcol)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_QUADS);
|
||||
duAppendBox(dd, minx,miny,minz, maxx,maxy,maxz, fcol);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawCylinder(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_TRIS);
|
||||
duAppendCylinder(dd, minx,miny,minz, maxx,maxy,maxz, col);
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawGridXZ(struct duDebugDraw* dd, const float ox, const float oy, const float oz,
|
||||
const int w, const int h, const float size,
|
||||
const unsigned int col, const float lineWidth)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, lineWidth);
|
||||
for (int i = 0; i <= h; ++i)
|
||||
{
|
||||
dd->vertex(ox,oy,oz+i*size, col);
|
||||
dd->vertex(ox+w*size,oy,oz+i*size, col);
|
||||
}
|
||||
for (int i = 0; i <= w; ++i)
|
||||
{
|
||||
dd->vertex(ox+i*size,oy,oz, col);
|
||||
dd->vertex(ox+i*size,oy,oz+h*size, col);
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
|
||||
void duAppendCylinderWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
static const int NUM_SEG = 16;
|
||||
static float dir[NUM_SEG*2];
|
||||
static bool init = false;
|
||||
if (!init)
|
||||
{
|
||||
init = true;
|
||||
for (int i = 0; i < NUM_SEG; ++i)
|
||||
{
|
||||
const float a = (float)i/(float)NUM_SEG*DU_PI*2;
|
||||
dir[i*2] = dtMathCosf(a);
|
||||
dir[i*2+1] = dtMathSinf(a);
|
||||
}
|
||||
}
|
||||
|
||||
const float cx = (maxx + minx)/2;
|
||||
const float cz = (maxz + minz)/2;
|
||||
const float rx = (maxx - minx)/2;
|
||||
const float rz = (maxz - minz)/2;
|
||||
|
||||
for (int i = 0, j = NUM_SEG-1; i < NUM_SEG; j = i++)
|
||||
{
|
||||
dd->vertex(cx+dir[j*2+0]*rx, miny, cz+dir[j*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[i*2+0]*rx, miny, cz+dir[i*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[j*2+0]*rx, maxy, cz+dir[j*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[i*2+0]*rx, maxy, cz+dir[i*2+1]*rz, col);
|
||||
}
|
||||
for (int i = 0; i < NUM_SEG; i += NUM_SEG/4)
|
||||
{
|
||||
dd->vertex(cx+dir[i*2+0]*rx, miny, cz+dir[i*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[i*2+0]*rx, maxy, cz+dir[i*2+1]*rz, col);
|
||||
}
|
||||
}
|
||||
|
||||
void duAppendBoxWire(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
// Top
|
||||
dd->vertex(minx, miny, minz, col);
|
||||
dd->vertex(maxx, miny, minz, col);
|
||||
dd->vertex(maxx, miny, minz, col);
|
||||
dd->vertex(maxx, miny, maxz, col);
|
||||
dd->vertex(maxx, miny, maxz, col);
|
||||
dd->vertex(minx, miny, maxz, col);
|
||||
dd->vertex(minx, miny, maxz, col);
|
||||
dd->vertex(minx, miny, minz, col);
|
||||
|
||||
// bottom
|
||||
dd->vertex(minx, maxy, minz, col);
|
||||
dd->vertex(maxx, maxy, minz, col);
|
||||
dd->vertex(maxx, maxy, minz, col);
|
||||
dd->vertex(maxx, maxy, maxz, col);
|
||||
dd->vertex(maxx, maxy, maxz, col);
|
||||
dd->vertex(minx, maxy, maxz, col);
|
||||
dd->vertex(minx, maxy, maxz, col);
|
||||
dd->vertex(minx, maxy, minz, col);
|
||||
|
||||
// Sides
|
||||
dd->vertex(minx, miny, minz, col);
|
||||
dd->vertex(minx, maxy, minz, col);
|
||||
dd->vertex(maxx, miny, minz, col);
|
||||
dd->vertex(maxx, maxy, minz, col);
|
||||
dd->vertex(maxx, miny, maxz, col);
|
||||
dd->vertex(maxx, maxy, maxz, col);
|
||||
dd->vertex(minx, miny, maxz, col);
|
||||
dd->vertex(minx, maxy, maxz, col);
|
||||
}
|
||||
|
||||
void duAppendBoxPoints(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
// Top
|
||||
dd->vertex(minx, miny, minz, col);
|
||||
dd->vertex(maxx, miny, minz, col);
|
||||
dd->vertex(maxx, miny, minz, col);
|
||||
dd->vertex(maxx, miny, maxz, col);
|
||||
dd->vertex(maxx, miny, maxz, col);
|
||||
dd->vertex(minx, miny, maxz, col);
|
||||
dd->vertex(minx, miny, maxz, col);
|
||||
dd->vertex(minx, miny, minz, col);
|
||||
|
||||
// bottom
|
||||
dd->vertex(minx, maxy, minz, col);
|
||||
dd->vertex(maxx, maxy, minz, col);
|
||||
dd->vertex(maxx, maxy, minz, col);
|
||||
dd->vertex(maxx, maxy, maxz, col);
|
||||
dd->vertex(maxx, maxy, maxz, col);
|
||||
dd->vertex(minx, maxy, maxz, col);
|
||||
dd->vertex(minx, maxy, maxz, col);
|
||||
dd->vertex(minx, maxy, minz, col);
|
||||
}
|
||||
|
||||
void duAppendBox(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, const unsigned int* fcol)
|
||||
{
|
||||
if (!dd) return;
|
||||
const float verts[8*3] =
|
||||
{
|
||||
minx, miny, minz,
|
||||
maxx, miny, minz,
|
||||
maxx, miny, maxz,
|
||||
minx, miny, maxz,
|
||||
minx, maxy, minz,
|
||||
maxx, maxy, minz,
|
||||
maxx, maxy, maxz,
|
||||
minx, maxy, maxz,
|
||||
};
|
||||
static const unsigned char inds[6*4] =
|
||||
{
|
||||
7, 6, 5, 4,
|
||||
0, 1, 2, 3,
|
||||
1, 5, 6, 2,
|
||||
3, 7, 4, 0,
|
||||
2, 6, 7, 3,
|
||||
0, 4, 5, 1,
|
||||
};
|
||||
|
||||
const unsigned char* in = inds;
|
||||
for (int i = 0; i < 6; ++i)
|
||||
{
|
||||
dd->vertex(&verts[*in*3], fcol[i]); in++;
|
||||
dd->vertex(&verts[*in*3], fcol[i]); in++;
|
||||
dd->vertex(&verts[*in*3], fcol[i]); in++;
|
||||
dd->vertex(&verts[*in*3], fcol[i]); in++;
|
||||
}
|
||||
}
|
||||
|
||||
void duAppendCylinder(struct duDebugDraw* dd, float minx, float miny, float minz,
|
||||
float maxx, float maxy, float maxz, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
static const int NUM_SEG = 16;
|
||||
static float dir[NUM_SEG*2];
|
||||
static bool init = false;
|
||||
if (!init)
|
||||
{
|
||||
init = true;
|
||||
for (int i = 0; i < NUM_SEG; ++i)
|
||||
{
|
||||
const float a = (float)i/(float)NUM_SEG*DU_PI*2;
|
||||
dir[i*2] = cosf(a);
|
||||
dir[i*2+1] = sinf(a);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int col2 = duMultCol(col, 160);
|
||||
|
||||
const float cx = (maxx + minx)/2;
|
||||
const float cz = (maxz + minz)/2;
|
||||
const float rx = (maxx - minx)/2;
|
||||
const float rz = (maxz - minz)/2;
|
||||
|
||||
for (int i = 2; i < NUM_SEG; ++i)
|
||||
{
|
||||
const int a = 0, b = i-1, c = i;
|
||||
dd->vertex(cx+dir[a*2+0]*rx, miny, cz+dir[a*2+1]*rz, col2);
|
||||
dd->vertex(cx+dir[b*2+0]*rx, miny, cz+dir[b*2+1]*rz, col2);
|
||||
dd->vertex(cx+dir[c*2+0]*rx, miny, cz+dir[c*2+1]*rz, col2);
|
||||
}
|
||||
for (int i = 2; i < NUM_SEG; ++i)
|
||||
{
|
||||
const int a = 0, b = i, c = i-1;
|
||||
dd->vertex(cx+dir[a*2+0]*rx, maxy, cz+dir[a*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[b*2+0]*rx, maxy, cz+dir[b*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[c*2+0]*rx, maxy, cz+dir[c*2+1]*rz, col);
|
||||
}
|
||||
for (int i = 0, j = NUM_SEG-1; i < NUM_SEG; j = i++)
|
||||
{
|
||||
dd->vertex(cx+dir[i*2+0]*rx, miny, cz+dir[i*2+1]*rz, col2);
|
||||
dd->vertex(cx+dir[j*2+0]*rx, miny, cz+dir[j*2+1]*rz, col2);
|
||||
dd->vertex(cx+dir[j*2+0]*rx, maxy, cz+dir[j*2+1]*rz, col);
|
||||
|
||||
dd->vertex(cx+dir[i*2+0]*rx, miny, cz+dir[i*2+1]*rz, col2);
|
||||
dd->vertex(cx+dir[j*2+0]*rx, maxy, cz+dir[j*2+1]*rz, col);
|
||||
dd->vertex(cx+dir[i*2+0]*rx, maxy, cz+dir[i*2+1]*rz, col);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
inline void evalArc(const float x0, const float y0, const float z0,
|
||||
const float dx, const float dy, const float dz,
|
||||
const float h, const float u, float* res)
|
||||
{
|
||||
res[0] = x0 + dx * u;
|
||||
res[1] = y0 + dy * u + h * (1-(u*2-1)*(u*2-1));
|
||||
res[2] = z0 + dz * u;
|
||||
}
|
||||
|
||||
|
||||
inline void vcross(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||||
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
||||
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||||
}
|
||||
|
||||
inline void vnormalize(float* v)
|
||||
{
|
||||
float d = 1.0f / sqrtf(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
|
||||
v[0] *= d;
|
||||
v[1] *= d;
|
||||
v[2] *= d;
|
||||
}
|
||||
|
||||
inline void vsub(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]-v2[0];
|
||||
dest[1] = v1[1]-v2[1];
|
||||
dest[2] = v1[2]-v2[2];
|
||||
}
|
||||
|
||||
inline float vdistSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float x = v1[0]-v2[0];
|
||||
const float y = v1[1]-v2[1];
|
||||
const float z = v1[2]-v2[2];
|
||||
return x*x + y*y + z*z;
|
||||
}
|
||||
|
||||
|
||||
void appendArrowHead(struct duDebugDraw* dd, const float* p, const float* q,
|
||||
const float s, unsigned int col)
|
||||
{
|
||||
const float eps = 0.001f;
|
||||
if (!dd) return;
|
||||
if (vdistSqr(p,q) < eps*eps) return;
|
||||
float ax[3], ay[3] = {0,1,0}, az[3];
|
||||
vsub(az, q, p);
|
||||
vnormalize(az);
|
||||
vcross(ax, ay, az);
|
||||
vcross(ay, az, ax);
|
||||
vnormalize(ay);
|
||||
|
||||
dd->vertex(p, col);
|
||||
// dd->vertex(p[0]+az[0]*s+ay[0]*s/2, p[1]+az[1]*s+ay[1]*s/2, p[2]+az[2]*s+ay[2]*s/2, col);
|
||||
dd->vertex(p[0]+az[0]*s+ax[0]*s/3, p[1]+az[1]*s+ax[1]*s/3, p[2]+az[2]*s+ax[2]*s/3, col);
|
||||
|
||||
dd->vertex(p, col);
|
||||
// dd->vertex(p[0]+az[0]*s-ay[0]*s/2, p[1]+az[1]*s-ay[1]*s/2, p[2]+az[2]*s-ay[2]*s/2, col);
|
||||
dd->vertex(p[0]+az[0]*s-ax[0]*s/3, p[1]+az[1]*s-ax[1]*s/3, p[2]+az[2]*s-ax[2]*s/3, col);
|
||||
|
||||
}
|
||||
|
||||
void duAppendArc(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1, const float h,
|
||||
const float as0, const float as1, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
static const int NUM_ARC_PTS = 8;
|
||||
static const float PAD = 0.05f;
|
||||
static const float ARC_PTS_SCALE = (1.0f-PAD*2) / (float)NUM_ARC_PTS;
|
||||
const float dx = x1 - x0;
|
||||
const float dy = y1 - y0;
|
||||
const float dz = z1 - z0;
|
||||
const float len = sqrtf(dx*dx + dy*dy + dz*dz);
|
||||
float prev[3];
|
||||
evalArc(x0,y0,z0, dx,dy,dz, len*h, PAD, prev);
|
||||
for (int i = 1; i <= NUM_ARC_PTS; ++i)
|
||||
{
|
||||
const float u = PAD + i * ARC_PTS_SCALE;
|
||||
float pt[3];
|
||||
evalArc(x0,y0,z0, dx,dy,dz, len*h, u, pt);
|
||||
dd->vertex(prev[0],prev[1],prev[2], col);
|
||||
dd->vertex(pt[0],pt[1],pt[2], col);
|
||||
prev[0] = pt[0]; prev[1] = pt[1]; prev[2] = pt[2];
|
||||
}
|
||||
|
||||
// End arrows
|
||||
if (as0 > 0.001f)
|
||||
{
|
||||
float p[3], q[3];
|
||||
evalArc(x0,y0,z0, dx,dy,dz, len*h, PAD, p);
|
||||
evalArc(x0,y0,z0, dx,dy,dz, len*h, PAD+0.05f, q);
|
||||
appendArrowHead(dd, p, q, as0, col);
|
||||
}
|
||||
|
||||
if (as1 > 0.001f)
|
||||
{
|
||||
float p[3], q[3];
|
||||
evalArc(x0,y0,z0, dx,dy,dz, len*h, 1-PAD, p);
|
||||
evalArc(x0,y0,z0, dx,dy,dz, len*h, 1-(PAD+0.05f), q);
|
||||
appendArrowHead(dd, p, q, as1, col);
|
||||
}
|
||||
}
|
||||
|
||||
void duAppendArrow(struct duDebugDraw* dd, const float x0, const float y0, const float z0,
|
||||
const float x1, const float y1, const float z1,
|
||||
const float as0, const float as1, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
dd->vertex(x0,y0,z0, col);
|
||||
dd->vertex(x1,y1,z1, col);
|
||||
|
||||
// End arrows
|
||||
const float p[3] = {x0,y0,z0}, q[3] = {x1,y1,z1};
|
||||
if (as0 > 0.001f)
|
||||
appendArrowHead(dd, p, q, as0, col);
|
||||
if (as1 > 0.001f)
|
||||
appendArrowHead(dd, q, p, as1, col);
|
||||
}
|
||||
|
||||
void duAppendCircle(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float r, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
static const int NUM_SEG = 40;
|
||||
static float dir[40*2];
|
||||
static bool init = false;
|
||||
if (!init)
|
||||
{
|
||||
init = true;
|
||||
for (int i = 0; i < NUM_SEG; ++i)
|
||||
{
|
||||
const float a = (float)i/(float)NUM_SEG*DU_PI*2;
|
||||
dir[i*2] = cosf(a);
|
||||
dir[i*2+1] = sinf(a);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0, j = NUM_SEG-1; i < NUM_SEG; j = i++)
|
||||
{
|
||||
dd->vertex(x+dir[j*2+0]*r, y, z+dir[j*2+1]*r, col);
|
||||
dd->vertex(x+dir[i*2+0]*r, y, z+dir[i*2+1]*r, col);
|
||||
}
|
||||
}
|
||||
|
||||
void duAppendCross(struct duDebugDraw* dd, const float x, const float y, const float z,
|
||||
const float s, unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
dd->vertex(x-s,y,z, col);
|
||||
dd->vertex(x+s,y,z, col);
|
||||
dd->vertex(x,y-s,z, col);
|
||||
dd->vertex(x,y+s,z, col);
|
||||
dd->vertex(x,y,z-s, col);
|
||||
dd->vertex(x,y,z+s, col);
|
||||
}
|
||||
|
||||
duDisplayList::duDisplayList(int cap) :
|
||||
m_pos(0),
|
||||
m_color(0),
|
||||
m_size(0),
|
||||
m_cap(0),
|
||||
m_depthMask(true),
|
||||
m_prim(DU_DRAW_LINES),
|
||||
m_primSize(1.0f)
|
||||
{
|
||||
if (cap < 8)
|
||||
cap = 8;
|
||||
resize(cap);
|
||||
}
|
||||
|
||||
duDisplayList::~duDisplayList()
|
||||
{
|
||||
delete [] m_pos;
|
||||
delete [] m_color;
|
||||
}
|
||||
|
||||
void duDisplayList::resize(int cap)
|
||||
{
|
||||
float* newPos = new float[cap*3];
|
||||
if (m_size)
|
||||
memcpy(newPos, m_pos, sizeof(float)*3*m_size);
|
||||
delete [] m_pos;
|
||||
m_pos = newPos;
|
||||
|
||||
unsigned int* newColor = new unsigned int[cap];
|
||||
if (m_size)
|
||||
memcpy(newColor, m_color, sizeof(unsigned int)*m_size);
|
||||
delete [] m_color;
|
||||
m_color = newColor;
|
||||
|
||||
m_cap = cap;
|
||||
}
|
||||
|
||||
void duDisplayList::clear()
|
||||
{
|
||||
m_size = 0;
|
||||
}
|
||||
|
||||
void duDisplayList::depthMask(bool state)
|
||||
{
|
||||
m_depthMask = state;
|
||||
}
|
||||
|
||||
void duDisplayList::begin(duDebugDrawPrimitives prim, float size)
|
||||
{
|
||||
clear();
|
||||
m_prim = prim;
|
||||
m_primSize = size;
|
||||
}
|
||||
|
||||
void duDisplayList::vertex(const float x, const float y, const float z, unsigned int color)
|
||||
{
|
||||
if (m_size+1 >= m_cap)
|
||||
resize(m_cap*2);
|
||||
float* p = &m_pos[m_size*3];
|
||||
p[0] = x;
|
||||
p[1] = y;
|
||||
p[2] = z;
|
||||
m_color[m_size] = color;
|
||||
m_size++;
|
||||
}
|
||||
|
||||
void duDisplayList::vertex(const float* pos, unsigned int color)
|
||||
{
|
||||
vertex(pos[0],pos[1],pos[2],color);
|
||||
}
|
||||
|
||||
void duDisplayList::end()
|
||||
{
|
||||
}
|
||||
|
||||
void duDisplayList::draw(struct duDebugDraw* dd)
|
||||
{
|
||||
if (!dd) return;
|
||||
if (!m_size) return;
|
||||
dd->depthMask(m_depthMask);
|
||||
dd->begin(m_prim, m_primSize);
|
||||
for (int i = 0; i < m_size; ++i)
|
||||
dd->vertex(&m_pos[i*3], m_color[i]);
|
||||
dd->end();
|
||||
}
|
||||
862
libs/recast/debug_utils/src/DetourDebugDraw.cpp
Normal file
862
libs/recast/debug_utils/src/DetourDebugDraw.cpp
Normal file
@ -0,0 +1,862 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include "DebugDraw.h"
|
||||
#include "DetourDebugDraw.h"
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourCommon.h"
|
||||
#include "DetourNode.h"
|
||||
|
||||
|
||||
static float distancePtLine2d(const float* pt, const float* p, const float* q)
|
||||
{
|
||||
float pqx = q[0] - p[0];
|
||||
float pqz = q[2] - p[2];
|
||||
float dx = pt[0] - p[0];
|
||||
float dz = pt[2] - p[2];
|
||||
float d = pqx*pqx + pqz*pqz;
|
||||
float t = pqx*dx + pqz*dz;
|
||||
if (d != 0) t /= d;
|
||||
dx = p[0] + t*pqx - pt[0];
|
||||
dz = p[2] + t*pqz - pt[2];
|
||||
return dx*dx + dz*dz;
|
||||
}
|
||||
|
||||
static void drawPolyBoundaries(duDebugDraw* dd, const dtMeshTile* tile,
|
||||
const unsigned int col, const float linew,
|
||||
bool inner)
|
||||
{
|
||||
static const float thr = 0.01f*0.01f;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, linew);
|
||||
|
||||
for (int i = 0; i < tile->header->polyCount; ++i)
|
||||
{
|
||||
const dtPoly* p = &tile->polys[i];
|
||||
|
||||
if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) continue;
|
||||
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[i];
|
||||
|
||||
for (int j = 0, nj = (int)p->vertCount; j < nj; ++j)
|
||||
{
|
||||
unsigned int c = col;
|
||||
if (inner)
|
||||
{
|
||||
if (p->neis[j] == 0) continue;
|
||||
if (p->neis[j] & DT_EXT_LINK)
|
||||
{
|
||||
bool con = false;
|
||||
for (unsigned int k = p->firstLink; k != DT_NULL_LINK; k = tile->links[k].next)
|
||||
{
|
||||
if (tile->links[k].edge == j)
|
||||
{
|
||||
con = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (con)
|
||||
c = duRGBA(255,255,255,48);
|
||||
else
|
||||
c = duRGBA(0,0,0,48);
|
||||
}
|
||||
else
|
||||
c = duRGBA(0,48,64,32);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (p->neis[j] != 0) continue;
|
||||
}
|
||||
|
||||
const float* v0 = &tile->verts[p->verts[j]*3];
|
||||
const float* v1 = &tile->verts[p->verts[(j+1) % nj]*3];
|
||||
|
||||
// Draw detail mesh edges which align with the actual poly edge.
|
||||
// This is really slow.
|
||||
for (int k = 0; k < pd->triCount; ++k)
|
||||
{
|
||||
const unsigned char* t = &tile->detailTris[(pd->triBase+k)*4];
|
||||
const float* tv[3];
|
||||
for (int m = 0; m < 3; ++m)
|
||||
{
|
||||
if (t[m] < p->vertCount)
|
||||
tv[m] = &tile->verts[p->verts[t[m]]*3];
|
||||
else
|
||||
tv[m] = &tile->detailVerts[(pd->vertBase+(t[m]-p->vertCount))*3];
|
||||
}
|
||||
for (int m = 0, n = 2; m < 3; n=m++)
|
||||
{
|
||||
if (((t[3] >> (n*2)) & 0x3) == 0) continue; // Skip inner detail edges.
|
||||
if (distancePtLine2d(tv[n],v0,v1) < thr &&
|
||||
distancePtLine2d(tv[m],v0,v1) < thr)
|
||||
{
|
||||
dd->vertex(tv[n], c);
|
||||
dd->vertex(tv[m], c);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
static void drawMeshTile(duDebugDraw* dd, const dtNavMesh& mesh, const dtNavMeshQuery* query,
|
||||
const dtMeshTile* tile, unsigned char flags)
|
||||
{
|
||||
dtPolyRef base = mesh.getPolyRefBase(tile);
|
||||
|
||||
int tileNum = mesh.decodePolyIdTile(base);
|
||||
const unsigned int tileColor = duIntToCol(tileNum, 128);
|
||||
|
||||
dd->depthMask(false);
|
||||
|
||||
dd->begin(DU_DRAW_TRIS);
|
||||
for (int i = 0; i < tile->header->polyCount; ++i)
|
||||
{
|
||||
const dtPoly* p = &tile->polys[i];
|
||||
if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) // Skip off-mesh links.
|
||||
continue;
|
||||
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[i];
|
||||
|
||||
unsigned int col;
|
||||
if (query && query->isInClosedList(base | (dtPolyRef)i))
|
||||
col = duRGBA(255,196,0,64);
|
||||
else
|
||||
{
|
||||
if (flags & DU_DRAWNAVMESH_COLOR_TILES)
|
||||
col = tileColor;
|
||||
else
|
||||
col = duTransCol(dd->areaToCol(p->getArea()), 64);
|
||||
}
|
||||
|
||||
for (int j = 0; j < pd->triCount; ++j)
|
||||
{
|
||||
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
if (t[k] < p->vertCount)
|
||||
dd->vertex(&tile->verts[p->verts[t[k]]*3], col);
|
||||
else
|
||||
dd->vertex(&tile->detailVerts[(pd->vertBase+t[k]-p->vertCount)*3], col);
|
||||
}
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
// Draw inter poly boundaries
|
||||
drawPolyBoundaries(dd, tile, duRGBA(0,48,64,32), 1.5f, true);
|
||||
|
||||
// Draw outer poly boundaries
|
||||
drawPolyBoundaries(dd, tile, duRGBA(0,48,64,220), 2.5f, false);
|
||||
|
||||
if (flags & DU_DRAWNAVMESH_OFFMESHCONS)
|
||||
{
|
||||
dd->begin(DU_DRAW_LINES, 2.0f);
|
||||
for (int i = 0; i < tile->header->polyCount; ++i)
|
||||
{
|
||||
const dtPoly* p = &tile->polys[i];
|
||||
if (p->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) // Skip regular polys.
|
||||
continue;
|
||||
|
||||
unsigned int col, col2;
|
||||
if (query && query->isInClosedList(base | (dtPolyRef)i))
|
||||
col = duRGBA(255,196,0,220);
|
||||
else
|
||||
col = duDarkenCol(duTransCol(dd->areaToCol(p->getArea()), 220));
|
||||
|
||||
const dtOffMeshConnection* con = &tile->offMeshCons[i - tile->header->offMeshBase];
|
||||
const float* va = &tile->verts[p->verts[0]*3];
|
||||
const float* vb = &tile->verts[p->verts[1]*3];
|
||||
|
||||
// Check to see if start and end end-points have links.
|
||||
bool startSet = false;
|
||||
bool endSet = false;
|
||||
for (unsigned int k = p->firstLink; k != DT_NULL_LINK; k = tile->links[k].next)
|
||||
{
|
||||
if (tile->links[k].edge == 0)
|
||||
startSet = true;
|
||||
if (tile->links[k].edge == 1)
|
||||
endSet = true;
|
||||
}
|
||||
|
||||
// End points and their on-mesh locations.
|
||||
dd->vertex(va[0],va[1],va[2], col);
|
||||
dd->vertex(con->pos[0],con->pos[1],con->pos[2], col);
|
||||
col2 = startSet ? col : duRGBA(220,32,16,196);
|
||||
duAppendCircle(dd, con->pos[0],con->pos[1]+0.1f,con->pos[2], con->rad, col2);
|
||||
|
||||
dd->vertex(vb[0],vb[1],vb[2], col);
|
||||
dd->vertex(con->pos[3],con->pos[4],con->pos[5], col);
|
||||
col2 = endSet ? col : duRGBA(220,32,16,196);
|
||||
duAppendCircle(dd, con->pos[3],con->pos[4]+0.1f,con->pos[5], con->rad, col2);
|
||||
|
||||
// End point vertices.
|
||||
dd->vertex(con->pos[0],con->pos[1],con->pos[2], duRGBA(0,48,64,196));
|
||||
dd->vertex(con->pos[0],con->pos[1]+0.2f,con->pos[2], duRGBA(0,48,64,196));
|
||||
|
||||
dd->vertex(con->pos[3],con->pos[4],con->pos[5], duRGBA(0,48,64,196));
|
||||
dd->vertex(con->pos[3],con->pos[4]+0.2f,con->pos[5], duRGBA(0,48,64,196));
|
||||
|
||||
// Connection arc.
|
||||
duAppendArc(dd, con->pos[0],con->pos[1],con->pos[2], con->pos[3],con->pos[4],con->pos[5], 0.25f,
|
||||
(con->flags & 1) ? 0.6f : 0, 0.6f, col);
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
const unsigned int vcol = duRGBA(0,0,0,196);
|
||||
dd->begin(DU_DRAW_POINTS, 3.0f);
|
||||
for (int i = 0; i < tile->header->vertCount; ++i)
|
||||
{
|
||||
const float* v = &tile->verts[i*3];
|
||||
dd->vertex(v[0], v[1], v[2], vcol);
|
||||
}
|
||||
dd->end();
|
||||
|
||||
dd->depthMask(true);
|
||||
}
|
||||
|
||||
void duDebugDrawNavMesh(duDebugDraw* dd, const dtNavMesh& mesh, unsigned char flags)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
for (int i = 0; i < mesh.getMaxTiles(); ++i)
|
||||
{
|
||||
const dtMeshTile* tile = mesh.getTile(i);
|
||||
if (!tile->header) continue;
|
||||
drawMeshTile(dd, mesh, 0, tile, flags);
|
||||
}
|
||||
}
|
||||
|
||||
void duDebugDrawNavMeshWithClosedList(struct duDebugDraw* dd, const dtNavMesh& mesh, const dtNavMeshQuery& query, unsigned char flags)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
const dtNavMeshQuery* q = (flags & DU_DRAWNAVMESH_CLOSEDLIST) ? &query : 0;
|
||||
|
||||
for (int i = 0; i < mesh.getMaxTiles(); ++i)
|
||||
{
|
||||
const dtMeshTile* tile = mesh.getTile(i);
|
||||
if (!tile->header) continue;
|
||||
drawMeshTile(dd, mesh, q, tile, flags);
|
||||
}
|
||||
}
|
||||
|
||||
void duDebugDrawNavMeshNodes(struct duDebugDraw* dd, const dtNavMeshQuery& query)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
const dtNodePool* pool = query.getNodePool();
|
||||
if (pool)
|
||||
{
|
||||
const float off = 0.5f;
|
||||
dd->begin(DU_DRAW_POINTS, 4.0f);
|
||||
for (int i = 0; i < pool->getHashSize(); ++i)
|
||||
{
|
||||
for (dtNodeIndex j = pool->getFirst(i); j != DT_NULL_IDX; j = pool->getNext(j))
|
||||
{
|
||||
const dtNode* node = pool->getNodeAtIdx(j+1);
|
||||
if (!node) continue;
|
||||
dd->vertex(node->pos[0],node->pos[1]+off,node->pos[2], duRGBA(255,192,0,255));
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
dd->begin(DU_DRAW_LINES, 2.0f);
|
||||
for (int i = 0; i < pool->getHashSize(); ++i)
|
||||
{
|
||||
for (dtNodeIndex j = pool->getFirst(i); j != DT_NULL_IDX; j = pool->getNext(j))
|
||||
{
|
||||
const dtNode* node = pool->getNodeAtIdx(j+1);
|
||||
if (!node) continue;
|
||||
if (!node->pidx) continue;
|
||||
const dtNode* parent = pool->getNodeAtIdx(node->pidx);
|
||||
if (!parent) continue;
|
||||
dd->vertex(node->pos[0],node->pos[1]+off,node->pos[2], duRGBA(255,192,0,128));
|
||||
dd->vertex(parent->pos[0],parent->pos[1]+off,parent->pos[2], duRGBA(255,192,0,128));
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void drawMeshTileBVTree(duDebugDraw* dd, const dtMeshTile* tile)
|
||||
{
|
||||
// Draw BV nodes.
|
||||
const float cs = 1.0f / tile->header->bvQuantFactor;
|
||||
dd->begin(DU_DRAW_LINES, 1.0f);
|
||||
for (int i = 0; i < tile->header->bvNodeCount; ++i)
|
||||
{
|
||||
const dtBVNode* n = &tile->bvTree[i];
|
||||
if (n->i < 0) // Leaf indices are positive.
|
||||
continue;
|
||||
duAppendBoxWire(dd, tile->header->bmin[0] + n->bmin[0]*cs,
|
||||
tile->header->bmin[1] + n->bmin[1]*cs,
|
||||
tile->header->bmin[2] + n->bmin[2]*cs,
|
||||
tile->header->bmin[0] + n->bmax[0]*cs,
|
||||
tile->header->bmin[1] + n->bmax[1]*cs,
|
||||
tile->header->bmin[2] + n->bmax[2]*cs,
|
||||
duRGBA(255,255,255,128));
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawNavMeshBVTree(duDebugDraw* dd, const dtNavMesh& mesh)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
for (int i = 0; i < mesh.getMaxTiles(); ++i)
|
||||
{
|
||||
const dtMeshTile* tile = mesh.getTile(i);
|
||||
if (!tile->header) continue;
|
||||
drawMeshTileBVTree(dd, tile);
|
||||
}
|
||||
}
|
||||
|
||||
static void drawMeshTilePortal(duDebugDraw* dd, const dtMeshTile* tile)
|
||||
{
|
||||
// Draw portals
|
||||
const float padx = 0.04f;
|
||||
const float pady = tile->header->walkableClimb;
|
||||
|
||||
dd->begin(DU_DRAW_LINES, 2.0f);
|
||||
|
||||
for (int side = 0; side < 8; ++side)
|
||||
{
|
||||
unsigned short m = DT_EXT_LINK | (unsigned short)side;
|
||||
|
||||
for (int i = 0; i < tile->header->polyCount; ++i)
|
||||
{
|
||||
dtPoly* poly = &tile->polys[i];
|
||||
|
||||
// Create new links.
|
||||
const int nv = poly->vertCount;
|
||||
for (int j = 0; j < nv; ++j)
|
||||
{
|
||||
// Skip edges which do not point to the right side.
|
||||
if (poly->neis[j] != m)
|
||||
continue;
|
||||
|
||||
// Create new links
|
||||
const float* va = &tile->verts[poly->verts[j]*3];
|
||||
const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
|
||||
|
||||
if (side == 0 || side == 4)
|
||||
{
|
||||
unsigned int col = side == 0 ? duRGBA(128,0,0,128) : duRGBA(128,0,128,128);
|
||||
|
||||
const float x = va[0] + ((side == 0) ? -padx : padx);
|
||||
|
||||
dd->vertex(x,va[1]-pady,va[2], col);
|
||||
dd->vertex(x,va[1]+pady,va[2], col);
|
||||
|
||||
dd->vertex(x,va[1]+pady,va[2], col);
|
||||
dd->vertex(x,vb[1]+pady,vb[2], col);
|
||||
|
||||
dd->vertex(x,vb[1]+pady,vb[2], col);
|
||||
dd->vertex(x,vb[1]-pady,vb[2], col);
|
||||
|
||||
dd->vertex(x,vb[1]-pady,vb[2], col);
|
||||
dd->vertex(x,va[1]-pady,va[2], col);
|
||||
}
|
||||
else if (side == 2 || side == 6)
|
||||
{
|
||||
unsigned int col = side == 2 ? duRGBA(0,128,0,128) : duRGBA(0,128,128,128);
|
||||
|
||||
const float z = va[2] + ((side == 2) ? -padx : padx);
|
||||
|
||||
dd->vertex(va[0],va[1]-pady,z, col);
|
||||
dd->vertex(va[0],va[1]+pady,z, col);
|
||||
|
||||
dd->vertex(va[0],va[1]+pady,z, col);
|
||||
dd->vertex(vb[0],vb[1]+pady,z, col);
|
||||
|
||||
dd->vertex(vb[0],vb[1]+pady,z, col);
|
||||
dd->vertex(vb[0],vb[1]-pady,z, col);
|
||||
|
||||
dd->vertex(vb[0],vb[1]-pady,z, col);
|
||||
dd->vertex(va[0],va[1]-pady,z, col);
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawNavMeshPortals(duDebugDraw* dd, const dtNavMesh& mesh)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
for (int i = 0; i < mesh.getMaxTiles(); ++i)
|
||||
{
|
||||
const dtMeshTile* tile = mesh.getTile(i);
|
||||
if (!tile->header) continue;
|
||||
drawMeshTilePortal(dd, tile);
|
||||
}
|
||||
}
|
||||
|
||||
void duDebugDrawNavMeshPolysWithFlags(struct duDebugDraw* dd, const dtNavMesh& mesh,
|
||||
const unsigned short polyFlags, const unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
for (int i = 0; i < mesh.getMaxTiles(); ++i)
|
||||
{
|
||||
const dtMeshTile* tile = mesh.getTile(i);
|
||||
if (!tile->header) continue;
|
||||
dtPolyRef base = mesh.getPolyRefBase(tile);
|
||||
|
||||
for (int j = 0; j < tile->header->polyCount; ++j)
|
||||
{
|
||||
const dtPoly* p = &tile->polys[j];
|
||||
if ((p->flags & polyFlags) == 0) continue;
|
||||
duDebugDrawNavMeshPoly(dd, mesh, base|(dtPolyRef)j, col);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void duDebugDrawNavMeshPoly(duDebugDraw* dd, const dtNavMesh& mesh, dtPolyRef ref, const unsigned int col)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
const dtMeshTile* tile = 0;
|
||||
const dtPoly* poly = 0;
|
||||
if (dtStatusFailed(mesh.getTileAndPolyByRef(ref, &tile, &poly)))
|
||||
return;
|
||||
|
||||
dd->depthMask(false);
|
||||
|
||||
const unsigned int c = duTransCol(col, 64);
|
||||
const unsigned int ip = (unsigned int)(poly - tile->polys);
|
||||
|
||||
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
|
||||
{
|
||||
dtOffMeshConnection* con = &tile->offMeshCons[ip - tile->header->offMeshBase];
|
||||
|
||||
dd->begin(DU_DRAW_LINES, 2.0f);
|
||||
|
||||
// Connection arc.
|
||||
duAppendArc(dd, con->pos[0],con->pos[1],con->pos[2], con->pos[3],con->pos[4],con->pos[5], 0.25f,
|
||||
(con->flags & 1) ? 0.6f : 0.0f, 0.6f, c);
|
||||
|
||||
dd->end();
|
||||
}
|
||||
else
|
||||
{
|
||||
const dtPolyDetail* pd = &tile->detailMeshes[ip];
|
||||
|
||||
dd->begin(DU_DRAW_TRIS);
|
||||
for (int i = 0; i < pd->triCount; ++i)
|
||||
{
|
||||
const unsigned char* t = &tile->detailTris[(pd->triBase+i)*4];
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
if (t[j] < poly->vertCount)
|
||||
dd->vertex(&tile->verts[poly->verts[t[j]]*3], c);
|
||||
else
|
||||
dd->vertex(&tile->detailVerts[(pd->vertBase+t[j]-poly->vertCount)*3], c);
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
dd->depthMask(true);
|
||||
|
||||
}
|
||||
|
||||
static void debugDrawTileCachePortals(struct duDebugDraw* dd, const dtTileCacheLayer& layer, const float cs, const float ch)
|
||||
{
|
||||
const int w = (int)layer.header->width;
|
||||
const int h = (int)layer.header->height;
|
||||
const float* bmin = layer.header->bmin;
|
||||
|
||||
// Portals
|
||||
unsigned int pcol = duRGBA(255,255,255,255);
|
||||
|
||||
const int segs[4*4] = {0,0,0,1, 0,1,1,1, 1,1,1,0, 1,0,0,0};
|
||||
|
||||
// Layer portals
|
||||
dd->begin(DU_DRAW_LINES, 2.0f);
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const int idx = x+y*w;
|
||||
const int lh = (int)layer.heights[idx];
|
||||
if (lh == 0xff) continue;
|
||||
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (layer.cons[idx] & (1<<(dir+4)))
|
||||
{
|
||||
const int* seg = &segs[dir*4];
|
||||
const float ax = bmin[0] + (x+seg[0])*cs;
|
||||
const float ay = bmin[1] + (lh+2)*ch;
|
||||
const float az = bmin[2] + (y+seg[1])*cs;
|
||||
const float bx = bmin[0] + (x+seg[2])*cs;
|
||||
const float by = bmin[1] + (lh+2)*ch;
|
||||
const float bz = bmin[2] + (y+seg[3])*cs;
|
||||
dd->vertex(ax, ay, az, pcol);
|
||||
dd->vertex(bx, by, bz, pcol);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawTileCacheLayerAreas(struct duDebugDraw* dd, const dtTileCacheLayer& layer, const float cs, const float ch)
|
||||
{
|
||||
const int w = (int)layer.header->width;
|
||||
const int h = (int)layer.header->height;
|
||||
const float* bmin = layer.header->bmin;
|
||||
const float* bmax = layer.header->bmax;
|
||||
const int idx = layer.header->tlayer;
|
||||
|
||||
unsigned int color = duIntToCol(idx+1, 255);
|
||||
|
||||
// Layer bounds
|
||||
float lbmin[3], lbmax[3];
|
||||
lbmin[0] = bmin[0] + layer.header->minx*cs;
|
||||
lbmin[1] = bmin[1];
|
||||
lbmin[2] = bmin[2] + layer.header->miny*cs;
|
||||
lbmax[0] = bmin[0] + (layer.header->maxx+1)*cs;
|
||||
lbmax[1] = bmax[1];
|
||||
lbmax[2] = bmin[2] + (layer.header->maxy+1)*cs;
|
||||
duDebugDrawBoxWire(dd, lbmin[0],lbmin[1],lbmin[2], lbmax[0],lbmax[1],lbmax[2], duTransCol(color,128), 2.0f);
|
||||
|
||||
// Layer height
|
||||
dd->begin(DU_DRAW_QUADS);
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const int lidx = x+y*w;
|
||||
const int lh = (int)layer.heights[lidx];
|
||||
if (lh == 0xff) continue;
|
||||
|
||||
const unsigned char area = layer.areas[lidx];
|
||||
unsigned int col;
|
||||
if (area == 63)
|
||||
col = duLerpCol(color, duRGBA(0,192,255,64), 32);
|
||||
else if (area == 0)
|
||||
col = duLerpCol(color, duRGBA(0,0,0,64), 32);
|
||||
else
|
||||
col = duLerpCol(color, dd->areaToCol(area), 32);
|
||||
|
||||
const float fx = bmin[0] + x*cs;
|
||||
const float fy = bmin[1] + (lh+1)*ch;
|
||||
const float fz = bmin[2] + y*cs;
|
||||
|
||||
dd->vertex(fx, fy, fz, col);
|
||||
dd->vertex(fx, fy, fz+cs, col);
|
||||
dd->vertex(fx+cs, fy, fz+cs, col);
|
||||
dd->vertex(fx+cs, fy, fz, col);
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
debugDrawTileCachePortals(dd, layer, cs, ch);
|
||||
}
|
||||
|
||||
void duDebugDrawTileCacheLayerRegions(struct duDebugDraw* dd, const dtTileCacheLayer& layer, const float cs, const float ch)
|
||||
{
|
||||
const int w = (int)layer.header->width;
|
||||
const int h = (int)layer.header->height;
|
||||
const float* bmin = layer.header->bmin;
|
||||
const float* bmax = layer.header->bmax;
|
||||
const int idx = layer.header->tlayer;
|
||||
|
||||
unsigned int color = duIntToCol(idx+1, 255);
|
||||
|
||||
// Layer bounds
|
||||
float lbmin[3], lbmax[3];
|
||||
lbmin[0] = bmin[0] + layer.header->minx*cs;
|
||||
lbmin[1] = bmin[1];
|
||||
lbmin[2] = bmin[2] + layer.header->miny*cs;
|
||||
lbmax[0] = bmin[0] + (layer.header->maxx+1)*cs;
|
||||
lbmax[1] = bmax[1];
|
||||
lbmax[2] = bmin[2] + (layer.header->maxy+1)*cs;
|
||||
duDebugDrawBoxWire(dd, lbmin[0],lbmin[1],lbmin[2], lbmax[0],lbmax[1],lbmax[2], duTransCol(color,128), 2.0f);
|
||||
|
||||
// Layer height
|
||||
dd->begin(DU_DRAW_QUADS);
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const int lidx = x+y*w;
|
||||
const int lh = (int)layer.heights[lidx];
|
||||
if (lh == 0xff) continue;
|
||||
const unsigned char reg = layer.regs[lidx];
|
||||
|
||||
unsigned int col = duLerpCol(color, duIntToCol(reg, 255), 192);
|
||||
|
||||
const float fx = bmin[0] + x*cs;
|
||||
const float fy = bmin[1] + (lh+1)*ch;
|
||||
const float fz = bmin[2] + y*cs;
|
||||
|
||||
dd->vertex(fx, fy, fz, col);
|
||||
dd->vertex(fx, fy, fz+cs, col);
|
||||
dd->vertex(fx+cs, fy, fz+cs, col);
|
||||
dd->vertex(fx+cs, fy, fz, col);
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
debugDrawTileCachePortals(dd, layer, cs, ch);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/*struct dtTileCacheContour
|
||||
{
|
||||
int nverts;
|
||||
unsigned char* verts;
|
||||
unsigned char reg;
|
||||
unsigned char area;
|
||||
};
|
||||
|
||||
struct dtTileCacheContourSet
|
||||
{
|
||||
int nconts;
|
||||
dtTileCacheContour* conts;
|
||||
};*/
|
||||
|
||||
void duDebugDrawTileCacheContours(duDebugDraw* dd, const struct dtTileCacheContourSet& lcset,
|
||||
const float* orig, const float cs, const float ch)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
const unsigned char a = 255;// (unsigned char)(alpha*255.0f);
|
||||
|
||||
const int offs[2*4] = {-1,0, 0,1, 1,0, 0,-1};
|
||||
|
||||
dd->begin(DU_DRAW_LINES, 2.0f);
|
||||
|
||||
for (int i = 0; i < lcset.nconts; ++i)
|
||||
{
|
||||
const dtTileCacheContour& c = lcset.conts[i];
|
||||
unsigned int color = 0;
|
||||
|
||||
color = duIntToCol(i, a);
|
||||
|
||||
for (int j = 0; j < c.nverts; ++j)
|
||||
{
|
||||
const int k = (j+1) % c.nverts;
|
||||
const unsigned char* va = &c.verts[j*4];
|
||||
const unsigned char* vb = &c.verts[k*4];
|
||||
const float ax = orig[0] + va[0]*cs;
|
||||
const float ay = orig[1] + (va[1]+1+(i&1))*ch;
|
||||
const float az = orig[2] + va[2]*cs;
|
||||
const float bx = orig[0] + vb[0]*cs;
|
||||
const float by = orig[1] + (vb[1]+1+(i&1))*ch;
|
||||
const float bz = orig[2] + vb[2]*cs;
|
||||
unsigned int col = color;
|
||||
if ((va[3] & 0xf) != 0xf)
|
||||
{
|
||||
// Portal segment
|
||||
col = duRGBA(255,255,255,128);
|
||||
int d = va[3] & 0xf;
|
||||
|
||||
const float cx = (ax+bx)*0.5f;
|
||||
const float cy = (ay+by)*0.5f;
|
||||
const float cz = (az+bz)*0.5f;
|
||||
|
||||
const float dx = cx + offs[d*2+0]*2*cs;
|
||||
const float dy = cy;
|
||||
const float dz = cz + offs[d*2+1]*2*cs;
|
||||
|
||||
dd->vertex(cx,cy,cz,duRGBA(255,0,0,255));
|
||||
dd->vertex(dx,dy,dz,duRGBA(255,0,0,255));
|
||||
}
|
||||
|
||||
duAppendArrow(dd, ax,ay,az, bx,by,bz, 0.0f, cs*0.5f, col);
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
dd->begin(DU_DRAW_POINTS, 4.0f);
|
||||
|
||||
for (int i = 0; i < lcset.nconts; ++i)
|
||||
{
|
||||
const dtTileCacheContour& c = lcset.conts[i];
|
||||
unsigned int color = 0;
|
||||
|
||||
for (int j = 0; j < c.nverts; ++j)
|
||||
{
|
||||
const unsigned char* va = &c.verts[j*4];
|
||||
|
||||
color = duDarkenCol(duIntToCol(i, a));
|
||||
if (va[3] & 0x80)
|
||||
{
|
||||
// Border vertex
|
||||
color = duRGBA(255,0,0,255);
|
||||
}
|
||||
|
||||
float fx = orig[0] + va[0]*cs;
|
||||
float fy = orig[1] + (va[1]+1+(i&1))*ch;
|
||||
float fz = orig[2] + va[2]*cs;
|
||||
dd->vertex(fx,fy,fz, color);
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
void duDebugDrawTileCachePolyMesh(duDebugDraw* dd, const struct dtTileCachePolyMesh& lmesh,
|
||||
const float* orig, const float cs, const float ch)
|
||||
{
|
||||
if (!dd) return;
|
||||
|
||||
const int nvp = lmesh.nvp;
|
||||
|
||||
const int offs[2*4] = {-1,0, 0,1, 1,0, 0,-1};
|
||||
|
||||
dd->begin(DU_DRAW_TRIS);
|
||||
|
||||
for (int i = 0; i < lmesh.npolys; ++i)
|
||||
{
|
||||
const unsigned short* p = &lmesh.polys[i*nvp*2];
|
||||
const unsigned char area = lmesh.areas[i];
|
||||
|
||||
unsigned int color;
|
||||
if (area == DT_TILECACHE_WALKABLE_AREA)
|
||||
color = duRGBA(0,192,255,64);
|
||||
else if (area == DT_TILECACHE_NULL_AREA)
|
||||
color = duRGBA(0,0,0,64);
|
||||
else
|
||||
color = dd->areaToCol(area);
|
||||
|
||||
unsigned short vi[3];
|
||||
for (int j = 2; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == DT_TILECACHE_NULL_IDX) break;
|
||||
vi[0] = p[0];
|
||||
vi[1] = p[j-1];
|
||||
vi[2] = p[j];
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
const unsigned short* v = &lmesh.verts[vi[k]*3];
|
||||
const float x = orig[0] + v[0]*cs;
|
||||
const float y = orig[1] + (v[1]+1)*ch;
|
||||
const float z = orig[2] + v[2]*cs;
|
||||
dd->vertex(x,y,z, color);
|
||||
}
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
// Draw neighbours edges
|
||||
const unsigned int coln = duRGBA(0,48,64,32);
|
||||
dd->begin(DU_DRAW_LINES, 1.5f);
|
||||
for (int i = 0; i < lmesh.npolys; ++i)
|
||||
{
|
||||
const unsigned short* p = &lmesh.polys[i*nvp*2];
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == DT_TILECACHE_NULL_IDX) break;
|
||||
if (p[nvp+j] & 0x8000) continue;
|
||||
const int nj = (j+1 >= nvp || p[j+1] == DT_TILECACHE_NULL_IDX) ? 0 : j+1;
|
||||
int vi[2] = {p[j], p[nj]};
|
||||
|
||||
for (int k = 0; k < 2; ++k)
|
||||
{
|
||||
const unsigned short* v = &lmesh.verts[vi[k]*3];
|
||||
const float x = orig[0] + v[0]*cs;
|
||||
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
|
||||
const float z = orig[2] + v[2]*cs;
|
||||
dd->vertex(x, y, z, coln);
|
||||
}
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
// Draw boundary edges
|
||||
const unsigned int colb = duRGBA(0,48,64,220);
|
||||
dd->begin(DU_DRAW_LINES, 2.5f);
|
||||
for (int i = 0; i < lmesh.npolys; ++i)
|
||||
{
|
||||
const unsigned short* p = &lmesh.polys[i*nvp*2];
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == DT_TILECACHE_NULL_IDX) break;
|
||||
if ((p[nvp+j] & 0x8000) == 0) continue;
|
||||
const int nj = (j+1 >= nvp || p[j+1] == DT_TILECACHE_NULL_IDX) ? 0 : j+1;
|
||||
int vi[2] = {p[j], p[nj]};
|
||||
|
||||
unsigned int col = colb;
|
||||
if ((p[nvp+j] & 0xf) != 0xf)
|
||||
{
|
||||
const unsigned short* va = &lmesh.verts[vi[0]*3];
|
||||
const unsigned short* vb = &lmesh.verts[vi[1]*3];
|
||||
|
||||
const float ax = orig[0] + va[0]*cs;
|
||||
const float ay = orig[1] + (va[1]+1+(i&1))*ch;
|
||||
const float az = orig[2] + va[2]*cs;
|
||||
const float bx = orig[0] + vb[0]*cs;
|
||||
const float by = orig[1] + (vb[1]+1+(i&1))*ch;
|
||||
const float bz = orig[2] + vb[2]*cs;
|
||||
|
||||
const float cx = (ax+bx)*0.5f;
|
||||
const float cy = (ay+by)*0.5f;
|
||||
const float cz = (az+bz)*0.5f;
|
||||
|
||||
int d = p[nvp+j] & 0xf;
|
||||
|
||||
const float dx = cx + offs[d*2+0]*2*cs;
|
||||
const float dy = cy;
|
||||
const float dz = cz + offs[d*2+1]*2*cs;
|
||||
|
||||
dd->vertex(cx,cy,cz,duRGBA(255,0,0,255));
|
||||
dd->vertex(dx,dy,dz,duRGBA(255,0,0,255));
|
||||
|
||||
col = duRGBA(255,255,255,128);
|
||||
}
|
||||
|
||||
for (int k = 0; k < 2; ++k)
|
||||
{
|
||||
const unsigned short* v = &lmesh.verts[vi[k]*3];
|
||||
const float x = orig[0] + v[0]*cs;
|
||||
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
|
||||
const float z = orig[2] + v[2]*cs;
|
||||
dd->vertex(x, y, z, col);
|
||||
}
|
||||
}
|
||||
}
|
||||
dd->end();
|
||||
|
||||
dd->begin(DU_DRAW_POINTS, 3.0f);
|
||||
const unsigned int colv = duRGBA(0,0,0,220);
|
||||
for (int i = 0; i < lmesh.nverts; ++i)
|
||||
{
|
||||
const unsigned short* v = &lmesh.verts[i*3];
|
||||
const float x = orig[0] + v[0]*cs;
|
||||
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
|
||||
const float z = orig[2] + v[2]*cs;
|
||||
dd->vertex(x,y,z, colv);
|
||||
}
|
||||
dd->end();
|
||||
}
|
||||
|
||||
|
||||
|
||||
1064
libs/recast/debug_utils/src/RecastDebugDraw.cpp
Normal file
1064
libs/recast/debug_utils/src/RecastDebugDraw.cpp
Normal file
File diff suppressed because it is too large
Load Diff
451
libs/recast/debug_utils/src/RecastDump.cpp
Normal file
451
libs/recast/debug_utils/src/RecastDump.cpp
Normal file
@ -0,0 +1,451 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
#include <string.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastDump.h"
|
||||
|
||||
|
||||
duFileIO::~duFileIO()
|
||||
{
|
||||
// Empty
|
||||
}
|
||||
|
||||
static void ioprintf(duFileIO* io, const char* format, ...)
|
||||
{
|
||||
char line[256];
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
const int n = vsnprintf(line, sizeof(line), format, ap);
|
||||
va_end(ap);
|
||||
if (n > 0)
|
||||
io->write(line, sizeof(char)*n);
|
||||
}
|
||||
|
||||
bool duDumpPolyMeshToObj(rcPolyMesh& pmesh, duFileIO* io)
|
||||
{
|
||||
if (!io)
|
||||
{
|
||||
printf("duDumpPolyMeshToObj: input IO is null.\n");
|
||||
return false;
|
||||
}
|
||||
if (!io->isWriting())
|
||||
{
|
||||
printf("duDumpPolyMeshToObj: input IO not writing.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
const int nvp = pmesh.nvp;
|
||||
const float cs = pmesh.cs;
|
||||
const float ch = pmesh.ch;
|
||||
const float* orig = pmesh.bmin;
|
||||
|
||||
ioprintf(io, "# Recast Navmesh\n");
|
||||
ioprintf(io, "o NavMesh\n");
|
||||
|
||||
ioprintf(io, "\n");
|
||||
|
||||
for (int i = 0; i < pmesh.nverts; ++i)
|
||||
{
|
||||
const unsigned short* v = &pmesh.verts[i*3];
|
||||
const float x = orig[0] + v[0]*cs;
|
||||
const float y = orig[1] + (v[1]+1)*ch + 0.1f;
|
||||
const float z = orig[2] + v[2]*cs;
|
||||
ioprintf(io, "v %f %f %f\n", x,y,z);
|
||||
}
|
||||
|
||||
ioprintf(io, "\n");
|
||||
|
||||
for (int i = 0; i < pmesh.npolys; ++i)
|
||||
{
|
||||
const unsigned short* p = &pmesh.polys[i*nvp*2];
|
||||
for (int j = 2; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == RC_MESH_NULL_IDX) break;
|
||||
ioprintf(io, "f %d %d %d\n", p[0]+1, p[j-1]+1, p[j]+1);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool duDumpPolyMeshDetailToObj(rcPolyMeshDetail& dmesh, duFileIO* io)
|
||||
{
|
||||
if (!io)
|
||||
{
|
||||
printf("duDumpPolyMeshDetailToObj: input IO is null.\n");
|
||||
return false;
|
||||
}
|
||||
if (!io->isWriting())
|
||||
{
|
||||
printf("duDumpPolyMeshDetailToObj: input IO not writing.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
ioprintf(io, "# Recast Navmesh\n");
|
||||
ioprintf(io, "o NavMesh\n");
|
||||
|
||||
ioprintf(io, "\n");
|
||||
|
||||
for (int i = 0; i < dmesh.nverts; ++i)
|
||||
{
|
||||
const float* v = &dmesh.verts[i*3];
|
||||
ioprintf(io, "v %f %f %f\n", v[0],v[1],v[2]);
|
||||
}
|
||||
|
||||
ioprintf(io, "\n");
|
||||
|
||||
for (int i = 0; i < dmesh.nmeshes; ++i)
|
||||
{
|
||||
const unsigned int* m = &dmesh.meshes[i*4];
|
||||
const unsigned int bverts = m[0];
|
||||
const unsigned int btris = m[2];
|
||||
const unsigned int ntris = m[3];
|
||||
const unsigned char* tris = &dmesh.tris[btris*4];
|
||||
for (unsigned int j = 0; j < ntris; ++j)
|
||||
{
|
||||
ioprintf(io, "f %d %d %d\n",
|
||||
(int)(bverts+tris[j*4+0])+1,
|
||||
(int)(bverts+tris[j*4+1])+1,
|
||||
(int)(bverts+tris[j*4+2])+1);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static const int CSET_MAGIC = ('c' << 24) | ('s' << 16) | ('e' << 8) | 't';
|
||||
static const int CSET_VERSION = 2;
|
||||
|
||||
bool duDumpContourSet(struct rcContourSet& cset, duFileIO* io)
|
||||
{
|
||||
if (!io)
|
||||
{
|
||||
printf("duDumpContourSet: input IO is null.\n");
|
||||
return false;
|
||||
}
|
||||
if (!io->isWriting())
|
||||
{
|
||||
printf("duDumpContourSet: input IO not writing.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
io->write(&CSET_MAGIC, sizeof(CSET_MAGIC));
|
||||
io->write(&CSET_VERSION, sizeof(CSET_VERSION));
|
||||
|
||||
io->write(&cset.nconts, sizeof(cset.nconts));
|
||||
|
||||
io->write(cset.bmin, sizeof(cset.bmin));
|
||||
io->write(cset.bmax, sizeof(cset.bmax));
|
||||
|
||||
io->write(&cset.cs, sizeof(cset.cs));
|
||||
io->write(&cset.ch, sizeof(cset.ch));
|
||||
|
||||
io->write(&cset.width, sizeof(cset.width));
|
||||
io->write(&cset.height, sizeof(cset.height));
|
||||
io->write(&cset.borderSize, sizeof(cset.borderSize));
|
||||
|
||||
for (int i = 0; i < cset.nconts; ++i)
|
||||
{
|
||||
const rcContour& cont = cset.conts[i];
|
||||
io->write(&cont.nverts, sizeof(cont.nverts));
|
||||
io->write(&cont.nrverts, sizeof(cont.nrverts));
|
||||
io->write(&cont.reg, sizeof(cont.reg));
|
||||
io->write(&cont.area, sizeof(cont.area));
|
||||
io->write(cont.verts, sizeof(int)*4*cont.nverts);
|
||||
io->write(cont.rverts, sizeof(int)*4*cont.nrverts);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool duReadContourSet(struct rcContourSet& cset, duFileIO* io)
|
||||
{
|
||||
if (!io)
|
||||
{
|
||||
printf("duReadContourSet: input IO is null.\n");
|
||||
return false;
|
||||
}
|
||||
if (!io->isReading())
|
||||
{
|
||||
printf("duReadContourSet: input IO not reading.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
int magic = 0;
|
||||
int version = 0;
|
||||
|
||||
io->read(&magic, sizeof(magic));
|
||||
io->read(&version, sizeof(version));
|
||||
|
||||
if (magic != CSET_MAGIC)
|
||||
{
|
||||
printf("duReadContourSet: Bad voodoo.\n");
|
||||
return false;
|
||||
}
|
||||
if (version != CSET_VERSION)
|
||||
{
|
||||
printf("duReadContourSet: Bad version.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
io->read(&cset.nconts, sizeof(cset.nconts));
|
||||
|
||||
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*cset.nconts, RC_ALLOC_PERM);
|
||||
if (!cset.conts)
|
||||
{
|
||||
printf("duReadContourSet: Could not alloc contours (%d)\n", cset.nconts);
|
||||
return false;
|
||||
}
|
||||
memset(cset.conts, 0, sizeof(rcContour)*cset.nconts);
|
||||
|
||||
io->read(cset.bmin, sizeof(cset.bmin));
|
||||
io->read(cset.bmax, sizeof(cset.bmax));
|
||||
|
||||
io->read(&cset.cs, sizeof(cset.cs));
|
||||
io->read(&cset.ch, sizeof(cset.ch));
|
||||
|
||||
io->read(&cset.width, sizeof(cset.width));
|
||||
io->read(&cset.height, sizeof(cset.height));
|
||||
io->read(&cset.borderSize, sizeof(cset.borderSize));
|
||||
|
||||
for (int i = 0; i < cset.nconts; ++i)
|
||||
{
|
||||
rcContour& cont = cset.conts[i];
|
||||
io->read(&cont.nverts, sizeof(cont.nverts));
|
||||
io->read(&cont.nrverts, sizeof(cont.nrverts));
|
||||
io->read(&cont.reg, sizeof(cont.reg));
|
||||
io->read(&cont.area, sizeof(cont.area));
|
||||
|
||||
cont.verts = (int*)rcAlloc(sizeof(int)*4*cont.nverts, RC_ALLOC_PERM);
|
||||
if (!cont.verts)
|
||||
{
|
||||
printf("duReadContourSet: Could not alloc contour verts (%d)\n", cont.nverts);
|
||||
return false;
|
||||
}
|
||||
cont.rverts = (int*)rcAlloc(sizeof(int)*4*cont.nrverts, RC_ALLOC_PERM);
|
||||
if (!cont.rverts)
|
||||
{
|
||||
printf("duReadContourSet: Could not alloc contour rverts (%d)\n", cont.nrverts);
|
||||
return false;
|
||||
}
|
||||
|
||||
io->read(cont.verts, sizeof(int)*4*cont.nverts);
|
||||
io->read(cont.rverts, sizeof(int)*4*cont.nrverts);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static const int CHF_MAGIC = ('r' << 24) | ('c' << 16) | ('h' << 8) | 'f';
|
||||
static const int CHF_VERSION = 3;
|
||||
|
||||
bool duDumpCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io)
|
||||
{
|
||||
if (!io)
|
||||
{
|
||||
printf("duDumpCompactHeightfield: input IO is null.\n");
|
||||
return false;
|
||||
}
|
||||
if (!io->isWriting())
|
||||
{
|
||||
printf("duDumpCompactHeightfield: input IO not writing.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
io->write(&CHF_MAGIC, sizeof(CHF_MAGIC));
|
||||
io->write(&CHF_VERSION, sizeof(CHF_VERSION));
|
||||
|
||||
io->write(&chf.width, sizeof(chf.width));
|
||||
io->write(&chf.height, sizeof(chf.height));
|
||||
io->write(&chf.spanCount, sizeof(chf.spanCount));
|
||||
|
||||
io->write(&chf.walkableHeight, sizeof(chf.walkableHeight));
|
||||
io->write(&chf.walkableClimb, sizeof(chf.walkableClimb));
|
||||
io->write(&chf.borderSize, sizeof(chf.borderSize));
|
||||
|
||||
io->write(&chf.maxDistance, sizeof(chf.maxDistance));
|
||||
io->write(&chf.maxRegions, sizeof(chf.maxRegions));
|
||||
|
||||
io->write(chf.bmin, sizeof(chf.bmin));
|
||||
io->write(chf.bmax, sizeof(chf.bmax));
|
||||
|
||||
io->write(&chf.cs, sizeof(chf.cs));
|
||||
io->write(&chf.ch, sizeof(chf.ch));
|
||||
|
||||
int tmp = 0;
|
||||
if (chf.cells) tmp |= 1;
|
||||
if (chf.spans) tmp |= 2;
|
||||
if (chf.dist) tmp |= 4;
|
||||
if (chf.areas) tmp |= 8;
|
||||
|
||||
io->write(&tmp, sizeof(tmp));
|
||||
|
||||
if (chf.cells)
|
||||
io->write(chf.cells, sizeof(rcCompactCell)*chf.width*chf.height);
|
||||
if (chf.spans)
|
||||
io->write(chf.spans, sizeof(rcCompactSpan)*chf.spanCount);
|
||||
if (chf.dist)
|
||||
io->write(chf.dist, sizeof(unsigned short)*chf.spanCount);
|
||||
if (chf.areas)
|
||||
io->write(chf.areas, sizeof(unsigned char)*chf.spanCount);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool duReadCompactHeightfield(struct rcCompactHeightfield& chf, duFileIO* io)
|
||||
{
|
||||
if (!io)
|
||||
{
|
||||
printf("duReadCompactHeightfield: input IO is null.\n");
|
||||
return false;
|
||||
}
|
||||
if (!io->isReading())
|
||||
{
|
||||
printf("duReadCompactHeightfield: input IO not reading.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
int magic = 0;
|
||||
int version = 0;
|
||||
|
||||
io->read(&magic, sizeof(magic));
|
||||
io->read(&version, sizeof(version));
|
||||
|
||||
if (magic != CHF_MAGIC)
|
||||
{
|
||||
printf("duReadCompactHeightfield: Bad voodoo.\n");
|
||||
return false;
|
||||
}
|
||||
if (version != CHF_VERSION)
|
||||
{
|
||||
printf("duReadCompactHeightfield: Bad version.\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
io->read(&chf.width, sizeof(chf.width));
|
||||
io->read(&chf.height, sizeof(chf.height));
|
||||
io->read(&chf.spanCount, sizeof(chf.spanCount));
|
||||
|
||||
io->read(&chf.walkableHeight, sizeof(chf.walkableHeight));
|
||||
io->read(&chf.walkableClimb, sizeof(chf.walkableClimb));
|
||||
io->read(&chf.borderSize, sizeof(chf.borderSize));
|
||||
|
||||
io->read(&chf.maxDistance, sizeof(chf.maxDistance));
|
||||
io->read(&chf.maxRegions, sizeof(chf.maxRegions));
|
||||
|
||||
io->read(chf.bmin, sizeof(chf.bmin));
|
||||
io->read(chf.bmax, sizeof(chf.bmax));
|
||||
|
||||
io->read(&chf.cs, sizeof(chf.cs));
|
||||
io->read(&chf.ch, sizeof(chf.ch));
|
||||
|
||||
int tmp = 0;
|
||||
io->read(&tmp, sizeof(tmp));
|
||||
|
||||
if (tmp & 1)
|
||||
{
|
||||
chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*chf.width*chf.height, RC_ALLOC_PERM);
|
||||
if (!chf.cells)
|
||||
{
|
||||
printf("duReadCompactHeightfield: Could not alloc cells (%d)\n", chf.width*chf.height);
|
||||
return false;
|
||||
}
|
||||
io->read(chf.cells, sizeof(rcCompactCell)*chf.width*chf.height);
|
||||
}
|
||||
if (tmp & 2)
|
||||
{
|
||||
chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*chf.spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.spans)
|
||||
{
|
||||
printf("duReadCompactHeightfield: Could not alloc spans (%d)\n", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
io->read(chf.spans, sizeof(rcCompactSpan)*chf.spanCount);
|
||||
}
|
||||
if (tmp & 4)
|
||||
{
|
||||
chf.dist = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.dist)
|
||||
{
|
||||
printf("duReadCompactHeightfield: Could not alloc dist (%d)\n", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
io->read(chf.dist, sizeof(unsigned short)*chf.spanCount);
|
||||
}
|
||||
if (tmp & 8)
|
||||
{
|
||||
chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.areas)
|
||||
{
|
||||
printf("duReadCompactHeightfield: Could not alloc areas (%d)\n", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
io->read(chf.areas, sizeof(unsigned char)*chf.spanCount);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static void logLine(rcContext& ctx, rcTimerLabel label, const char* name, const float pc)
|
||||
{
|
||||
const int t = ctx.getAccumulatedTime(label);
|
||||
if (t < 0) return;
|
||||
ctx.log(RC_LOG_PROGRESS, "%s:\t%.2fms\t(%.1f%%)", name, t/1000.0f, t*pc);
|
||||
}
|
||||
|
||||
void duLogBuildTimes(rcContext& ctx, const int totalTimeUsec)
|
||||
{
|
||||
const float pc = 100.0f / totalTimeUsec;
|
||||
|
||||
ctx.log(RC_LOG_PROGRESS, "Build Times");
|
||||
logLine(ctx, RC_TIMER_RASTERIZE_TRIANGLES, "- Rasterize", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD, "- Build Compact", pc);
|
||||
logLine(ctx, RC_TIMER_FILTER_BORDER, "- Filter Border", pc);
|
||||
logLine(ctx, RC_TIMER_FILTER_WALKABLE, "- Filter Walkable", pc);
|
||||
logLine(ctx, RC_TIMER_ERODE_AREA, "- Erode Area", pc);
|
||||
logLine(ctx, RC_TIMER_MEDIAN_AREA, "- Median Area", pc);
|
||||
logLine(ctx, RC_TIMER_MARK_BOX_AREA, "- Mark Box Area", pc);
|
||||
logLine(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA, "- Mark Convex Area", pc);
|
||||
logLine(ctx, RC_TIMER_MARK_CYLINDER_AREA, "- Mark Cylinder Area", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_DISTANCEFIELD, "- Build Distance Field", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST, " - Distance", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR, " - Blur", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_REGIONS, "- Build Regions", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_REGIONS_WATERSHED, " - Watershed", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_REGIONS_EXPAND, " - Expand", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_REGIONS_FLOOD, " - Find Basins", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_REGIONS_FILTER, " - Filter", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_LAYERS, "- Build Layers", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_CONTOURS, "- Build Contours", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_CONTOURS_TRACE, " - Trace", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_CONTOURS_SIMPLIFY, " - Simplify", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_POLYMESH, "- Build Polymesh", pc);
|
||||
logLine(ctx, RC_TIMER_BUILD_POLYMESHDETAIL, "- Build Polymesh Detail", pc);
|
||||
logLine(ctx, RC_TIMER_MERGE_POLYMESH, "- Merge Polymeshes", pc);
|
||||
logLine(ctx, RC_TIMER_MERGE_POLYMESHDETAIL, "- Merge Polymesh Details", pc);
|
||||
ctx.log(RC_LOG_PROGRESS, "=== TOTAL:\t%.2fms", totalTimeUsec/1000.0f);
|
||||
}
|
||||
|
||||
61
libs/recast/detour/include/DetourAlloc.h
Normal file
61
libs/recast/detour/include/DetourAlloc.h
Normal file
@ -0,0 +1,61 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURALLOCATOR_H
|
||||
#define DETOURALLOCATOR_H
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
enum dtAllocHint
|
||||
{
|
||||
DT_ALLOC_PERM, ///< Memory persist after a function call.
|
||||
DT_ALLOC_TEMP ///< Memory used temporarily within a function.
|
||||
};
|
||||
|
||||
/// A memory allocation function.
|
||||
// @param[in] size The size, in bytes of memory, to allocate.
|
||||
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
|
||||
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see dtAllocSetCustom
|
||||
typedef void* (dtAllocFunc)(size_t size, dtAllocHint hint);
|
||||
|
||||
/// A memory deallocation function.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #dtAllocFunc.
|
||||
/// @see dtAllocSetCustom
|
||||
typedef void (dtFreeFunc)(void* ptr);
|
||||
|
||||
/// Sets the base custom allocation functions to be used by Detour.
|
||||
/// @param[in] allocFunc The memory allocation function to be used by #dtAlloc
|
||||
/// @param[in] freeFunc The memory de-allocation function to be used by #dtFree
|
||||
void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc);
|
||||
|
||||
/// Allocates a memory block.
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see dtFree
|
||||
void* dtAlloc(size_t size, dtAllocHint hint);
|
||||
|
||||
/// Deallocates a memory block.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #dtAlloc.
|
||||
/// @see dtAlloc
|
||||
void dtFree(void* ptr);
|
||||
|
||||
#endif
|
||||
56
libs/recast/detour/include/DetourAssert.h
Normal file
56
libs/recast/detour/include/DetourAssert.h
Normal file
@ -0,0 +1,56 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURASSERT_H
|
||||
#define DETOURASSERT_H
|
||||
|
||||
// Note: This header file's only purpose is to include define assert.
|
||||
// Feel free to change the file and include your own implementation instead.
|
||||
|
||||
#ifdef NDEBUG
|
||||
|
||||
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
|
||||
# define dtAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
|
||||
|
||||
#else
|
||||
|
||||
/// An assertion failure function.
|
||||
// @param[in] expression asserted expression.
|
||||
// @param[in] file Filename of the failed assertion.
|
||||
// @param[in] line Line number of the failed assertion.
|
||||
/// @see dtAssertFailSetCustom
|
||||
typedef void (dtAssertFailFunc)(const char* expression, const char* file, int line);
|
||||
|
||||
/// Sets the base custom assertion failure function to be used by Detour.
|
||||
/// @param[in] assertFailFunc The function to be invoked in case of failure of #dtAssert
|
||||
void dtAssertFailSetCustom(dtAssertFailFunc *assertFailFunc);
|
||||
|
||||
/// Gets the base custom assertion failure function to be used by Detour.
|
||||
dtAssertFailFunc* dtAssertFailGetCustom();
|
||||
|
||||
# include <assert.h>
|
||||
# define dtAssert(expression) \
|
||||
{ \
|
||||
dtAssertFailFunc* failFunc = dtAssertFailGetCustom(); \
|
||||
if(failFunc == NULL) { assert(expression); } \
|
||||
else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // DETOURASSERT_H
|
||||
550
libs/recast/detour/include/DetourCommon.h
Normal file
550
libs/recast/detour/include/DetourCommon.h
Normal file
@ -0,0 +1,550 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURCOMMON_H
|
||||
#define DETOURCOMMON_H
|
||||
|
||||
#include "DetourMath.h"
|
||||
#include <stddef.h>
|
||||
|
||||
/**
|
||||
@defgroup detour Detour
|
||||
|
||||
Members in this module are used to create, manipulate, and query navigation
|
||||
meshes.
|
||||
|
||||
@note This is a summary list of members. Use the index or search
|
||||
feature to find minor members.
|
||||
*/
|
||||
|
||||
/// @name General helper functions
|
||||
/// @{
|
||||
|
||||
/// Used to ignore a function parameter. VS complains about unused parameters
|
||||
/// and this silences the warning.
|
||||
/// @param [in] _ Unused parameter
|
||||
template<class T> void dtIgnoreUnused(const T&) { }
|
||||
|
||||
/// Swaps the values of the two parameters.
|
||||
/// @param[in,out] a Value A
|
||||
/// @param[in,out] b Value B
|
||||
template<class T> inline void dtSwap(T& a, T& b) { T t = a; a = b; b = t; }
|
||||
|
||||
/// Returns the minimum of two values.
|
||||
/// @param[in] a Value A
|
||||
/// @param[in] b Value B
|
||||
/// @return The minimum of the two values.
|
||||
template<class T> inline T dtMin(T a, T b) { return a < b ? a : b; }
|
||||
|
||||
/// Returns the maximum of two values.
|
||||
/// @param[in] a Value A
|
||||
/// @param[in] b Value B
|
||||
/// @return The maximum of the two values.
|
||||
template<class T> inline T dtMax(T a, T b) { return a > b ? a : b; }
|
||||
|
||||
/// Returns the absolute value.
|
||||
/// @param[in] a The value.
|
||||
/// @return The absolute value of the specified value.
|
||||
template<class T> inline T dtAbs(T a) { return a < 0 ? -a : a; }
|
||||
|
||||
/// Returns the square of the value.
|
||||
/// @param[in] a The value.
|
||||
/// @return The square of the value.
|
||||
template<class T> inline T dtSqr(T a) { return a*a; }
|
||||
|
||||
/// Clamps the value to the specified range.
|
||||
/// @param[in] v The value to clamp.
|
||||
/// @param[in] mn The minimum permitted return value.
|
||||
/// @param[in] mx The maximum permitted return value.
|
||||
/// @return The value, clamped to the specified range.
|
||||
template<class T> inline T dtClamp(T v, T mn, T mx) { return v < mn ? mn : (v > mx ? mx : v); }
|
||||
|
||||
/// @}
|
||||
/// @name Vector helper functions.
|
||||
/// @{
|
||||
|
||||
/// Derives the cross product of two vectors. (@p v1 x @p v2)
|
||||
/// @param[out] dest The cross product. [(x, y, z)]
|
||||
/// @param[in] v1 A Vector [(x, y, z)]
|
||||
/// @param[in] v2 A vector [(x, y, z)]
|
||||
inline void dtVcross(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
||||
dest[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
||||
dest[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors. (@p v1 . @p v2)
|
||||
/// @param[in] v1 A Vector [(x, y, z)]
|
||||
/// @param[in] v2 A vector [(x, y, z)]
|
||||
/// @return The dot product.
|
||||
inline float dtVdot(const float* v1, const float* v2)
|
||||
{
|
||||
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
||||
}
|
||||
|
||||
/// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s))
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)]
|
||||
/// @param[in] s The amount to scale @p v2 by before adding to @p v1.
|
||||
inline void dtVmad(float* dest, const float* v1, const float* v2, const float s)
|
||||
{
|
||||
dest[0] = v1[0]+v2[0]*s;
|
||||
dest[1] = v1[1]+v2[1]*s;
|
||||
dest[2] = v1[2]+v2[2]*s;
|
||||
}
|
||||
|
||||
/// Performs a linear interpolation between two vectors. (@p v1 toward @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, x)]
|
||||
/// @param[in] v1 The starting vector.
|
||||
/// @param[in] v2 The destination vector.
|
||||
/// @param[in] t The interpolation factor. [Limits: 0 <= value <= 1.0]
|
||||
inline void dtVlerp(float* dest, const float* v1, const float* v2, const float t)
|
||||
{
|
||||
dest[0] = v1[0]+(v2[0]-v1[0])*t;
|
||||
dest[1] = v1[1]+(v2[1]-v1[1])*t;
|
||||
dest[2] = v1[2]+(v2[2]-v1[2])*t;
|
||||
}
|
||||
|
||||
/// Performs a vector addition. (@p v1 + @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to add to @p v1. [(x, y, z)]
|
||||
inline void dtVadd(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]+v2[0];
|
||||
dest[1] = v1[1]+v2[1];
|
||||
dest[2] = v1[2]+v2[2];
|
||||
}
|
||||
|
||||
/// Performs a vector subtraction. (@p v1 - @p v2)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v1 The base vector. [(x, y, z)]
|
||||
/// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)]
|
||||
inline void dtVsub(float* dest, const float* v1, const float* v2)
|
||||
{
|
||||
dest[0] = v1[0]-v2[0];
|
||||
dest[1] = v1[1]-v2[1];
|
||||
dest[2] = v1[2]-v2[2];
|
||||
}
|
||||
|
||||
/// Scales the vector by the specified value. (@p v * @p t)
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] v The vector to scale. [(x, y, z)]
|
||||
/// @param[in] t The scaling factor.
|
||||
inline void dtVscale(float* dest, const float* v, const float t)
|
||||
{
|
||||
dest[0] = v[0]*t;
|
||||
dest[1] = v[1]*t;
|
||||
dest[2] = v[2]*t;
|
||||
}
|
||||
|
||||
/// Selects the minimum value of each element from the specified vectors.
|
||||
/// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)]
|
||||
/// @param[in] v A vector. [(x, y, z)]
|
||||
inline void dtVmin(float* mn, const float* v)
|
||||
{
|
||||
mn[0] = dtMin(mn[0], v[0]);
|
||||
mn[1] = dtMin(mn[1], v[1]);
|
||||
mn[2] = dtMin(mn[2], v[2]);
|
||||
}
|
||||
|
||||
/// Selects the maximum value of each element from the specified vectors.
|
||||
/// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)]
|
||||
/// @param[in] v A vector. [(x, y, z)]
|
||||
inline void dtVmax(float* mx, const float* v)
|
||||
{
|
||||
mx[0] = dtMax(mx[0], v[0]);
|
||||
mx[1] = dtMax(mx[1], v[1]);
|
||||
mx[2] = dtMax(mx[2], v[2]);
|
||||
}
|
||||
|
||||
/// Sets the vector elements to the specified values.
|
||||
/// @param[out] dest The result vector. [(x, y, z)]
|
||||
/// @param[in] x The x-value of the vector.
|
||||
/// @param[in] y The y-value of the vector.
|
||||
/// @param[in] z The z-value of the vector.
|
||||
inline void dtVset(float* dest, const float x, const float y, const float z)
|
||||
{
|
||||
dest[0] = x; dest[1] = y; dest[2] = z;
|
||||
}
|
||||
|
||||
/// Performs a vector copy.
|
||||
/// @param[out] dest The result. [(x, y, z)]
|
||||
/// @param[in] a The vector to copy. [(x, y, z)]
|
||||
inline void dtVcopy(float* dest, const float* a)
|
||||
{
|
||||
dest[0] = a[0];
|
||||
dest[1] = a[1];
|
||||
dest[2] = a[2];
|
||||
}
|
||||
|
||||
/// Derives the scalar length of the vector.
|
||||
/// @param[in] v The vector. [(x, y, z)]
|
||||
/// @return The scalar length of the vector.
|
||||
inline float dtVlen(const float* v)
|
||||
{
|
||||
return dtMathSqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
||||
}
|
||||
|
||||
/// Derives the square of the scalar length of the vector. (len * len)
|
||||
/// @param[in] v The vector. [(x, y, z)]
|
||||
/// @return The square of the scalar length of the vector.
|
||||
inline float dtVlenSqr(const float* v)
|
||||
{
|
||||
return v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
||||
}
|
||||
|
||||
/// Returns the distance between two points.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The distance between the two points.
|
||||
inline float dtVdist(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
const float dy = v2[1] - v1[1];
|
||||
const float dz = v2[2] - v1[2];
|
||||
return dtMathSqrtf(dx*dx + dy*dy + dz*dz);
|
||||
}
|
||||
|
||||
/// Returns the square of the distance between two points.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The square of the distance between the two points.
|
||||
inline float dtVdistSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
const float dy = v2[1] - v1[1];
|
||||
const float dz = v2[2] - v1[2];
|
||||
return dx*dx + dy*dy + dz*dz;
|
||||
}
|
||||
|
||||
/// Derives the distance between the specified points on the xz-plane.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The distance between the point on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVdist2D(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
const float dz = v2[2] - v1[2];
|
||||
return dtMathSqrtf(dx*dx + dz*dz);
|
||||
}
|
||||
|
||||
/// Derives the square of the distance between the specified points on the xz-plane.
|
||||
/// @param[in] v1 A point. [(x, y, z)]
|
||||
/// @param[in] v2 A point. [(x, y, z)]
|
||||
/// @return The square of the distance between the point on the xz-plane.
|
||||
inline float dtVdist2DSqr(const float* v1, const float* v2)
|
||||
{
|
||||
const float dx = v2[0] - v1[0];
|
||||
const float dz = v2[2] - v1[2];
|
||||
return dx*dx + dz*dz;
|
||||
}
|
||||
|
||||
/// Normalizes the vector.
|
||||
/// @param[in,out] v The vector to normalize. [(x, y, z)]
|
||||
inline void dtVnormalize(float* v)
|
||||
{
|
||||
float d = 1.0f / dtMathSqrtf(dtSqr(v[0]) + dtSqr(v[1]) + dtSqr(v[2]));
|
||||
v[0] *= d;
|
||||
v[1] *= d;
|
||||
v[2] *= d;
|
||||
}
|
||||
|
||||
/// Performs a 'sloppy' colocation check of the specified points.
|
||||
/// @param[in] p0 A point. [(x, y, z)]
|
||||
/// @param[in] p1 A point. [(x, y, z)]
|
||||
/// @return True if the points are considered to be at the same location.
|
||||
///
|
||||
/// Basically, this function will return true if the specified points are
|
||||
/// close enough to eachother to be considered colocated.
|
||||
inline bool dtVequal(const float* p0, const float* p1)
|
||||
{
|
||||
static const float thr = dtSqr(1.0f/16384.0f);
|
||||
const float d = dtVdistSqr(p0, p1);
|
||||
return d < thr;
|
||||
}
|
||||
|
||||
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
|
||||
/// @param[in] u A vector [(x, y, z)]
|
||||
/// @param[in] v A vector [(x, y, z)]
|
||||
/// @return The dot product on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVdot2D(const float* u, const float* v)
|
||||
{
|
||||
return u[0]*v[0] + u[2]*v[2];
|
||||
}
|
||||
|
||||
/// Derives the xz-plane 2D perp product of the two vectors. (uz*vx - ux*vz)
|
||||
/// @param[in] u The LHV vector [(x, y, z)]
|
||||
/// @param[in] v The RHV vector [(x, y, z)]
|
||||
/// @return The dot product on the xz-plane.
|
||||
///
|
||||
/// The vectors are projected onto the xz-plane, so the y-values are ignored.
|
||||
inline float dtVperp2D(const float* u, const float* v)
|
||||
{
|
||||
return u[2]*v[0] - u[0]*v[2];
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Computational geometry helper functions.
|
||||
/// @{
|
||||
|
||||
/// Derives the signed xz-plane area of the triangle ABC, or the relationship of line AB to point C.
|
||||
/// @param[in] a Vertex A. [(x, y, z)]
|
||||
/// @param[in] b Vertex B. [(x, y, z)]
|
||||
/// @param[in] c Vertex C. [(x, y, z)]
|
||||
/// @return The signed xz-plane area of the triangle.
|
||||
inline float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
{
|
||||
const float abx = b[0] - a[0];
|
||||
const float abz = b[2] - a[2];
|
||||
const float acx = c[0] - a[0];
|
||||
const float acz = c[2] - a[2];
|
||||
return acx*abz - abx*acz;
|
||||
}
|
||||
|
||||
/// Determines if two axis-aligned bounding boxes overlap.
|
||||
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
||||
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
||||
/// @return True if the two AABB's overlap.
|
||||
/// @see dtOverlapBounds
|
||||
inline bool dtOverlapQuantBounds(const unsigned short amin[3], const unsigned short amax[3],
|
||||
const unsigned short bmin[3], const unsigned short bmax[3])
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
/// Determines if two axis-aligned bounding boxes overlap.
|
||||
/// @param[in] amin Minimum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] amax Maximum bounds of box A. [(x, y, z)]
|
||||
/// @param[in] bmin Minimum bounds of box B. [(x, y, z)]
|
||||
/// @param[in] bmax Maximum bounds of box B. [(x, y, z)]
|
||||
/// @return True if the two AABB's overlap.
|
||||
/// @see dtOverlapQuantBounds
|
||||
inline bool dtOverlapBounds(const float* amin, const float* amax,
|
||||
const float* bmin, const float* bmax)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
/// Derives the closest point on a triangle from the specified reference point.
|
||||
/// @param[out] closest The closest point on the triangle.
|
||||
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
||||
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
||||
void dtClosestPtPointTriangle(float* closest, const float* p,
|
||||
const float* a, const float* b, const float* c);
|
||||
|
||||
/// Derives the y-axis height of the closest point on the triangle from the specified reference point.
|
||||
/// @param[in] p The reference point from which to test. [(x, y, z)]
|
||||
/// @param[in] a Vertex A of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] b Vertex B of triangle ABC. [(x, y, z)]
|
||||
/// @param[in] c Vertex C of triangle ABC. [(x, y, z)]
|
||||
/// @param[out] h The resulting height.
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h);
|
||||
|
||||
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
||||
const float* verts, int nverts,
|
||||
float& tmin, float& tmax,
|
||||
int& segMin, int& segMax);
|
||||
|
||||
bool dtIntersectSegSeg2D(const float* ap, const float* aq,
|
||||
const float* bp, const float* bq,
|
||||
float& s, float& t);
|
||||
|
||||
/// Determines if the specified point is inside the convex polygon on the xz-plane.
|
||||
/// @param[in] pt The point to check. [(x, y, z)]
|
||||
/// @param[in] verts The polygon vertices. [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices. [Limit: >= 3]
|
||||
/// @return True if the point is inside the polygon.
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts);
|
||||
|
||||
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
||||
float* ed, float* et);
|
||||
|
||||
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t);
|
||||
|
||||
/// Derives the centroid of a convex polygon.
|
||||
/// @param[out] tc The centroid of the polgyon. [(x, y, z)]
|
||||
/// @param[in] idx The polygon indices. [(vertIndex) * @p nidx]
|
||||
/// @param[in] nidx The number of indices in the polygon. [Limit: >= 3]
|
||||
/// @param[in] verts The polygon vertices. [(x, y, z) * vertCount]
|
||||
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts);
|
||||
|
||||
/// Determines if the two convex polygons overlap on the xz-plane.
|
||||
/// @param[in] polya Polygon A vertices. [(x, y, z) * @p npolya]
|
||||
/// @param[in] npolya The number of vertices in polygon A.
|
||||
/// @param[in] polyb Polygon B vertices. [(x, y, z) * @p npolyb]
|
||||
/// @param[in] npolyb The number of vertices in polygon B.
|
||||
/// @return True if the two polygons overlap.
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb);
|
||||
|
||||
/// @}
|
||||
/// @name Miscellanious functions.
|
||||
/// @{
|
||||
|
||||
inline unsigned int dtNextPow2(unsigned int v)
|
||||
{
|
||||
v--;
|
||||
v |= v >> 1;
|
||||
v |= v >> 2;
|
||||
v |= v >> 4;
|
||||
v |= v >> 8;
|
||||
v |= v >> 16;
|
||||
v++;
|
||||
return v;
|
||||
}
|
||||
|
||||
inline unsigned int dtIlog2(unsigned int v)
|
||||
{
|
||||
unsigned int r;
|
||||
unsigned int shift;
|
||||
r = (v > 0xffff) << 4; v >>= r;
|
||||
shift = (v > 0xff) << 3; v >>= shift; r |= shift;
|
||||
shift = (v > 0xf) << 2; v >>= shift; r |= shift;
|
||||
shift = (v > 0x3) << 1; v >>= shift; r |= shift;
|
||||
r |= (v >> 1);
|
||||
return r;
|
||||
}
|
||||
|
||||
inline int dtAlign4(int x) { return (x+3) & ~3; }
|
||||
|
||||
inline int dtOppositeTile(int side) { return (side+4) & 0x7; }
|
||||
|
||||
inline void dtSwapByte(unsigned char* a, unsigned char* b)
|
||||
{
|
||||
unsigned char tmp = *a;
|
||||
*a = *b;
|
||||
*b = tmp;
|
||||
}
|
||||
|
||||
inline void dtSwapEndian(unsigned short* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+1);
|
||||
}
|
||||
|
||||
inline void dtSwapEndian(short* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+1);
|
||||
}
|
||||
|
||||
inline void dtSwapEndian(unsigned int* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
inline void dtSwapEndian(int* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
inline void dtSwapEndian(float* v)
|
||||
{
|
||||
unsigned char* x = (unsigned char*)v;
|
||||
dtSwapByte(x+0, x+3); dtSwapByte(x+1, x+2);
|
||||
}
|
||||
|
||||
void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
|
||||
const float s, const float t, float* out);
|
||||
|
||||
template<typename TypeToRetrieveAs>
|
||||
TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(const unsigned char*& buffer, const size_t distanceToAdvance)
|
||||
{
|
||||
TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
|
||||
buffer += distanceToAdvance;
|
||||
return returnPointer;
|
||||
}
|
||||
|
||||
template<typename TypeToRetrieveAs>
|
||||
TypeToRetrieveAs* dtGetThenAdvanceBufferPointer(unsigned char*& buffer, const size_t distanceToAdvance)
|
||||
{
|
||||
TypeToRetrieveAs* returnPointer = reinterpret_cast<TypeToRetrieveAs*>(buffer);
|
||||
buffer += distanceToAdvance;
|
||||
return returnPointer;
|
||||
}
|
||||
|
||||
|
||||
/// @}
|
||||
|
||||
#endif // DETOURCOMMON_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@fn float dtTriArea2D(const float* a, const float* b, const float* c)
|
||||
@par
|
||||
|
||||
The vertices are projected onto the xz-plane, so the y-values are ignored.
|
||||
|
||||
This is a low cost function than can be used for various purposes. Its main purpose
|
||||
is for point/line relationship testing.
|
||||
|
||||
In all cases: A value of zero indicates that all vertices are collinear or represent the same point.
|
||||
(On the xz-plane.)
|
||||
|
||||
When used for point/line relationship tests, AB usually represents a line against which
|
||||
the C point is to be tested. In this case:
|
||||
|
||||
A positive value indicates that point C is to the left of line AB, looking from A toward B.<br/>
|
||||
A negative value indicates that point C is to the right of lineAB, looking from A toward B.
|
||||
|
||||
When used for evaluating a triangle:
|
||||
|
||||
The absolute value of the return value is two times the area of the triangle when it is
|
||||
projected onto the xz-plane.
|
||||
|
||||
A positive return value indicates:
|
||||
|
||||
<ul>
|
||||
<li>The vertices are wrapped in the normal Detour wrap direction.</li>
|
||||
<li>The triangle's 3D face normal is in the general up direction.</li>
|
||||
</ul>
|
||||
|
||||
A negative return value indicates:
|
||||
|
||||
<ul>
|
||||
<li>The vertices are reverse wrapped. (Wrapped opposite the normal Detour wrap direction.)</li>
|
||||
<li>The triangle's 3D face normal is in the general down direction.</li>
|
||||
</ul>
|
||||
|
||||
*/
|
||||
20
libs/recast/detour/include/DetourMath.h
Normal file
20
libs/recast/detour/include/DetourMath.h
Normal file
@ -0,0 +1,20 @@
|
||||
/**
|
||||
@defgroup detour Detour
|
||||
|
||||
Members in this module are wrappers around the standard math library
|
||||
*/
|
||||
|
||||
#ifndef DETOURMATH_H
|
||||
#define DETOURMATH_H
|
||||
|
||||
#include <math.h>
|
||||
|
||||
inline float dtMathFabsf(float x) { return fabsf(x); }
|
||||
inline float dtMathSqrtf(float x) { return sqrtf(x); }
|
||||
inline float dtMathFloorf(float x) { return floorf(x); }
|
||||
inline float dtMathCeilf(float x) { return ceilf(x); }
|
||||
inline float dtMathCosf(float x) { return cosf(x); }
|
||||
inline float dtMathSinf(float x) { return sinf(x); }
|
||||
inline float dtMathAtan2f(float y, float x) { return atan2f(y, x); }
|
||||
|
||||
#endif
|
||||
765
libs/recast/detour/include/DetourNavMesh.h
Normal file
765
libs/recast/detour/include/DetourNavMesh.h
Normal file
@ -0,0 +1,765 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURNAVMESH_H
|
||||
#define DETOURNAVMESH_H
|
||||
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourStatus.h"
|
||||
|
||||
// Undefine (or define in a build cofnig) the following line to use 64bit polyref.
|
||||
// Generally not needed, useful for very large worlds.
|
||||
// Note: tiles build using 32bit refs are not compatible with 64bit refs!
|
||||
//#define DT_POLYREF64 1
|
||||
|
||||
#ifdef DT_POLYREF64
|
||||
// TODO: figure out a multiplatform version of uint64_t
|
||||
// - maybe: https://code.google.com/p/msinttypes/
|
||||
// - or: http://www.azillionmonkeys.com/qed/pstdint.h
|
||||
#include <stdint.h>
|
||||
#endif
|
||||
|
||||
// Note: If you want to use 64-bit refs, change the types of both dtPolyRef & dtTileRef.
|
||||
// It is also recommended that you change dtHashRef() to a proper 64-bit hash.
|
||||
|
||||
/// A handle to a polygon within a navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
#ifdef DT_POLYREF64
|
||||
static const unsigned int DT_SALT_BITS = 16;
|
||||
static const unsigned int DT_TILE_BITS = 28;
|
||||
static const unsigned int DT_POLY_BITS = 20;
|
||||
typedef uint64_t dtPolyRef;
|
||||
#else
|
||||
typedef unsigned int dtPolyRef;
|
||||
#endif
|
||||
|
||||
/// A handle to a tile within a navigation mesh.
|
||||
/// @ingroup detour
|
||||
#ifdef DT_POLYREF64
|
||||
typedef uint64_t dtTileRef;
|
||||
#else
|
||||
typedef unsigned int dtTileRef;
|
||||
#endif
|
||||
|
||||
/// The maximum number of vertices per navigation polygon.
|
||||
/// @ingroup detour
|
||||
static const int DT_VERTS_PER_POLYGON = 6;
|
||||
|
||||
/// @{
|
||||
/// @name Tile Serialization Constants
|
||||
/// These constants are used to detect whether a navigation tile's data
|
||||
/// and state format is compatible with the current build.
|
||||
///
|
||||
|
||||
/// A magic number used to detect compatibility of navigation tile data.
|
||||
static const int DT_NAVMESH_MAGIC = 'D'<<24 | 'N'<<16 | 'A'<<8 | 'V';
|
||||
|
||||
/// A version number used to detect compatibility of navigation tile data.
|
||||
static const int DT_NAVMESH_VERSION = 7;
|
||||
|
||||
/// A magic number used to detect the compatibility of navigation tile states.
|
||||
static const int DT_NAVMESH_STATE_MAGIC = 'D'<<24 | 'N'<<16 | 'M'<<8 | 'S';
|
||||
|
||||
/// A version number used to detect compatibility of navigation tile states.
|
||||
static const int DT_NAVMESH_STATE_VERSION = 1;
|
||||
|
||||
/// @}
|
||||
|
||||
/// A flag that indicates that an entity links to an external entity.
|
||||
/// (E.g. A polygon edge is a portal that links to another polygon.)
|
||||
static const unsigned short DT_EXT_LINK = 0x8000;
|
||||
|
||||
/// A value that indicates the entity does not link to anything.
|
||||
static const unsigned int DT_NULL_LINK = 0xffffffff;
|
||||
|
||||
/// A flag that indicates that an off-mesh connection can be traversed in both directions. (Is bidirectional.)
|
||||
static const unsigned int DT_OFFMESH_CON_BIDIR = 1;
|
||||
|
||||
/// The maximum number of user defined area ids.
|
||||
/// @ingroup detour
|
||||
static const int DT_MAX_AREAS = 64;
|
||||
|
||||
/// Tile flags used for various functions and fields.
|
||||
/// For an example, see dtNavMesh::addTile().
|
||||
enum dtTileFlags
|
||||
{
|
||||
/// The navigation mesh owns the tile memory and is responsible for freeing it.
|
||||
DT_TILE_FREE_DATA = 0x01,
|
||||
};
|
||||
|
||||
/// Vertex flags returned by dtNavMeshQuery::findStraightPath.
|
||||
enum dtStraightPathFlags
|
||||
{
|
||||
DT_STRAIGHTPATH_START = 0x01, ///< The vertex is the start position in the path.
|
||||
DT_STRAIGHTPATH_END = 0x02, ///< The vertex is the end position in the path.
|
||||
DT_STRAIGHTPATH_OFFMESH_CONNECTION = 0x04, ///< The vertex is the start of an off-mesh connection.
|
||||
};
|
||||
|
||||
/// Options for dtNavMeshQuery::findStraightPath.
|
||||
enum dtStraightPathOptions
|
||||
{
|
||||
DT_STRAIGHTPATH_AREA_CROSSINGS = 0x01, ///< Add a vertex at every polygon edge crossing where area changes.
|
||||
DT_STRAIGHTPATH_ALL_CROSSINGS = 0x02, ///< Add a vertex at every polygon edge crossing.
|
||||
};
|
||||
|
||||
|
||||
/// Options for dtNavMeshQuery::initSlicedFindPath and updateSlicedFindPath
|
||||
enum dtFindPathOptions
|
||||
{
|
||||
DT_FINDPATH_ANY_ANGLE = 0x02, ///< use raycasts during pathfind to "shortcut" (raycast still consider costs)
|
||||
};
|
||||
|
||||
/// Options for dtNavMeshQuery::raycast
|
||||
enum dtRaycastOptions
|
||||
{
|
||||
DT_RAYCAST_USE_COSTS = 0x01, ///< Raycast should calculate movement cost along the ray and fill RaycastHit::cost
|
||||
};
|
||||
|
||||
|
||||
/// Limit raycasting during any angle pahfinding
|
||||
/// The limit is given as a multiple of the character radius
|
||||
static const float DT_RAY_CAST_LIMIT_PROPORTIONS = 50.0f;
|
||||
|
||||
/// Flags representing the type of a navigation mesh polygon.
|
||||
enum dtPolyTypes
|
||||
{
|
||||
/// The polygon is a standard convex polygon that is part of the surface of the mesh.
|
||||
DT_POLYTYPE_GROUND = 0,
|
||||
/// The polygon is an off-mesh connection consisting of two vertices.
|
||||
DT_POLYTYPE_OFFMESH_CONNECTION = 1,
|
||||
};
|
||||
|
||||
|
||||
/// Defines a polygon within a dtMeshTile object.
|
||||
/// @ingroup detour
|
||||
struct dtPoly
|
||||
{
|
||||
/// Index to first link in linked list. (Or #DT_NULL_LINK if there is no link.)
|
||||
unsigned int firstLink;
|
||||
|
||||
/// The indices of the polygon's vertices.
|
||||
/// The actual vertices are located in dtMeshTile::verts.
|
||||
unsigned short verts[DT_VERTS_PER_POLYGON];
|
||||
|
||||
/// Packed data representing neighbor polygons references and flags for each edge.
|
||||
unsigned short neis[DT_VERTS_PER_POLYGON];
|
||||
|
||||
/// The user defined polygon flags.
|
||||
unsigned short flags;
|
||||
|
||||
/// The number of vertices in the polygon.
|
||||
unsigned char vertCount;
|
||||
|
||||
/// The bit packed area id and polygon type.
|
||||
/// @note Use the structure's set and get methods to acess this value.
|
||||
unsigned char areaAndtype;
|
||||
|
||||
/// Sets the user defined area id. [Limit: < #DT_MAX_AREAS]
|
||||
inline void setArea(unsigned char a) { areaAndtype = (areaAndtype & 0xc0) | (a & 0x3f); }
|
||||
|
||||
/// Sets the polygon type. (See: #dtPolyTypes.)
|
||||
inline void setType(unsigned char t) { areaAndtype = (areaAndtype & 0x3f) | (t << 6); }
|
||||
|
||||
/// Gets the user defined area id.
|
||||
inline unsigned char getArea() const { return areaAndtype & 0x3f; }
|
||||
|
||||
/// Gets the polygon type. (See: #dtPolyTypes)
|
||||
inline unsigned char getType() const { return areaAndtype >> 6; }
|
||||
};
|
||||
|
||||
/// Defines the location of detail sub-mesh data within a dtMeshTile.
|
||||
struct dtPolyDetail
|
||||
{
|
||||
unsigned int vertBase; ///< The offset of the vertices in the dtMeshTile::detailVerts array.
|
||||
unsigned int triBase; ///< The offset of the triangles in the dtMeshTile::detailTris array.
|
||||
unsigned char vertCount; ///< The number of vertices in the sub-mesh.
|
||||
unsigned char triCount; ///< The number of triangles in the sub-mesh.
|
||||
};
|
||||
|
||||
/// Defines a link between polygons.
|
||||
/// @note This structure is rarely if ever used by the end user.
|
||||
/// @see dtMeshTile
|
||||
struct dtLink
|
||||
{
|
||||
dtPolyRef ref; ///< Neighbour reference. (The neighbor that is linked to.)
|
||||
unsigned int next; ///< Index of the next link.
|
||||
unsigned char edge; ///< Index of the polygon edge that owns this link.
|
||||
unsigned char side; ///< If a boundary link, defines on which side the link is.
|
||||
unsigned char bmin; ///< If a boundary link, defines the minimum sub-edge area.
|
||||
unsigned char bmax; ///< If a boundary link, defines the maximum sub-edge area.
|
||||
};
|
||||
|
||||
/// Bounding volume node.
|
||||
/// @note This structure is rarely if ever used by the end user.
|
||||
/// @see dtMeshTile
|
||||
struct dtBVNode
|
||||
{
|
||||
unsigned short bmin[3]; ///< Minimum bounds of the node's AABB. [(x, y, z)]
|
||||
unsigned short bmax[3]; ///< Maximum bounds of the node's AABB. [(x, y, z)]
|
||||
int i; ///< The node's index. (Negative for escape sequence.)
|
||||
};
|
||||
|
||||
/// Defines an navigation mesh off-mesh connection within a dtMeshTile object.
|
||||
/// An off-mesh connection is a user defined traversable connection made up to two vertices.
|
||||
struct dtOffMeshConnection
|
||||
{
|
||||
/// The endpoints of the connection. [(ax, ay, az, bx, by, bz)]
|
||||
float pos[6];
|
||||
|
||||
/// The radius of the endpoints. [Limit: >= 0]
|
||||
float rad;
|
||||
|
||||
/// The polygon reference of the connection within the tile.
|
||||
unsigned short poly;
|
||||
|
||||
/// Link flags.
|
||||
/// @note These are not the connection's user defined flags. Those are assigned via the
|
||||
/// connection's dtPoly definition. These are link flags used for internal purposes.
|
||||
unsigned char flags;
|
||||
|
||||
/// End point side.
|
||||
unsigned char side;
|
||||
|
||||
/// The id of the offmesh connection. (User assigned when the navigation mesh is built.)
|
||||
unsigned int userId;
|
||||
};
|
||||
|
||||
/// Provides high level information related to a dtMeshTile object.
|
||||
/// @ingroup detour
|
||||
struct dtMeshHeader
|
||||
{
|
||||
int magic; ///< Tile magic number. (Used to identify the data format.)
|
||||
int version; ///< Tile data format version number.
|
||||
int x; ///< The x-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int y; ///< The y-position of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
int layer; ///< The layer of the tile within the dtNavMesh tile grid. (x, y, layer)
|
||||
unsigned int userId; ///< The user defined id of the tile.
|
||||
int polyCount; ///< The number of polygons in the tile.
|
||||
int vertCount; ///< The number of vertices in the tile.
|
||||
int maxLinkCount; ///< The number of allocated links.
|
||||
int detailMeshCount; ///< The number of sub-meshes in the detail mesh.
|
||||
|
||||
/// The number of unique vertices in the detail mesh. (In addition to the polygon vertices.)
|
||||
int detailVertCount;
|
||||
|
||||
int detailTriCount; ///< The number of triangles in the detail mesh.
|
||||
int bvNodeCount; ///< The number of bounding volume nodes. (Zero if bounding volumes are disabled.)
|
||||
int offMeshConCount; ///< The number of off-mesh connections.
|
||||
int offMeshBase; ///< The index of the first polygon which is an off-mesh connection.
|
||||
float walkableHeight; ///< The height of the agents using the tile.
|
||||
float walkableRadius; ///< The radius of the agents using the tile.
|
||||
float walkableClimb; ///< The maximum climb height of the agents using the tile.
|
||||
float bmin[3]; ///< The minimum bounds of the tile's AABB. [(x, y, z)]
|
||||
float bmax[3]; ///< The maximum bounds of the tile's AABB. [(x, y, z)]
|
||||
|
||||
/// The bounding volume quantization factor.
|
||||
float bvQuantFactor;
|
||||
};
|
||||
|
||||
/// Defines a navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
struct dtMeshTile
|
||||
{
|
||||
unsigned int salt; ///< Counter describing modifications to the tile.
|
||||
|
||||
unsigned int linksFreeList; ///< Index to the next free link.
|
||||
dtMeshHeader* header; ///< The tile header.
|
||||
dtPoly* polys; ///< The tile polygons. [Size: dtMeshHeader::polyCount]
|
||||
float* verts; ///< The tile vertices. [Size: dtMeshHeader::vertCount]
|
||||
dtLink* links; ///< The tile links. [Size: dtMeshHeader::maxLinkCount]
|
||||
dtPolyDetail* detailMeshes; ///< The tile's detail sub-meshes. [Size: dtMeshHeader::detailMeshCount]
|
||||
|
||||
/// The detail mesh's unique vertices. [(x, y, z) * dtMeshHeader::detailVertCount]
|
||||
float* detailVerts;
|
||||
|
||||
/// The detail mesh's triangles. [(vertA, vertB, vertC) * dtMeshHeader::detailTriCount]
|
||||
unsigned char* detailTris;
|
||||
|
||||
/// The tile bounding volume nodes. [Size: dtMeshHeader::bvNodeCount]
|
||||
/// (Will be null if bounding volumes are disabled.)
|
||||
dtBVNode* bvTree;
|
||||
|
||||
dtOffMeshConnection* offMeshCons; ///< The tile off-mesh connections. [Size: dtMeshHeader::offMeshConCount]
|
||||
|
||||
unsigned char* data; ///< The tile data. (Not directly accessed under normal situations.)
|
||||
int dataSize; ///< Size of the tile data.
|
||||
int flags; ///< Tile flags. (See: #dtTileFlags)
|
||||
dtMeshTile* next; ///< The next free tile, or the next tile in the spatial grid.
|
||||
private:
|
||||
dtMeshTile(const dtMeshTile&);
|
||||
dtMeshTile& operator=(const dtMeshTile&);
|
||||
};
|
||||
|
||||
/// Configuration parameters used to define multi-tile navigation meshes.
|
||||
/// The values are used to allocate space during the initialization of a navigation mesh.
|
||||
/// @see dtNavMesh::init()
|
||||
/// @ingroup detour
|
||||
struct dtNavMeshParams
|
||||
{
|
||||
float orig[3]; ///< The world space origin of the navigation mesh's tile space. [(x, y, z)]
|
||||
float tileWidth; ///< The width of each tile. (Along the x-axis.)
|
||||
float tileHeight; ///< The height of each tile. (Along the z-axis.)
|
||||
int maxTiles; ///< The maximum number of tiles the navigation mesh can contain.
|
||||
int maxPolys; ///< The maximum number of polygons each tile can contain.
|
||||
};
|
||||
|
||||
/// A navigation mesh based on tiles of convex polygons.
|
||||
/// @ingroup detour
|
||||
class dtNavMesh
|
||||
{
|
||||
public:
|
||||
dtNavMesh();
|
||||
~dtNavMesh();
|
||||
|
||||
/// @{
|
||||
/// @name Initialization and Tile Management
|
||||
|
||||
/// Initializes the navigation mesh for tiled use.
|
||||
/// @param[in] params Initialization parameters.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus init(const dtNavMeshParams* params);
|
||||
|
||||
/// Initializes the navigation mesh for single tile use.
|
||||
/// @param[in] data Data of the new tile. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize The data size of the new tile.
|
||||
/// @param[in] flags The tile flags. (See: #dtTileFlags)
|
||||
/// @return The status flags for the operation.
|
||||
/// @see dtCreateNavMeshData
|
||||
dtStatus init(unsigned char* data, const int dataSize, const int flags);
|
||||
|
||||
/// The navigation mesh initialization params.
|
||||
const dtNavMeshParams* getParams() const;
|
||||
|
||||
/// Adds a tile to the navigation mesh.
|
||||
/// @param[in] data Data for the new tile mesh. (See: #dtCreateNavMeshData)
|
||||
/// @param[in] dataSize Data size of the new tile mesh.
|
||||
/// @param[in] flags Tile flags. (See: #dtTileFlags)
|
||||
/// @param[in] lastRef The desired reference for the tile. (When reloading a tile.) [opt] [Default: 0]
|
||||
/// @param[out] result The tile reference. (If the tile was succesfully added.) [opt]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus addTile(unsigned char* data, int dataSize, int flags, dtTileRef lastRef, dtTileRef* result);
|
||||
|
||||
/// Removes the specified tile from the navigation mesh.
|
||||
/// @param[in] ref The reference of the tile to remove.
|
||||
/// @param[out] data Data associated with deleted tile.
|
||||
/// @param[out] dataSize Size of the data associated with deleted tile.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus removeTile(dtTileRef ref, unsigned char** data, int* dataSize);
|
||||
|
||||
/// @}
|
||||
|
||||
/// @{
|
||||
/// @name Query Functions
|
||||
|
||||
/// Calculates the tile grid location for the specified world position.
|
||||
/// @param[in] pos The world position for the query. [(x, y, z)]
|
||||
/// @param[out] tx The tile's x-location. (x, y)
|
||||
/// @param[out] ty The tile's y-location. (x, y)
|
||||
void calcTileLoc(const float* pos, int* tx, int* ty) const;
|
||||
|
||||
/// Gets the tile at the specified grid location.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile, or null if the tile does not exist.
|
||||
const dtMeshTile* getTileAt(const int x, const int y, const int layer) const;
|
||||
|
||||
/// Gets all tiles at the specified grid location. (All layers.)
|
||||
/// @param[in] x The tile's x-location. (x, y)
|
||||
/// @param[in] y The tile's y-location. (x, y)
|
||||
/// @param[out] tiles A pointer to an array of tiles that will hold the result.
|
||||
/// @param[in] maxTiles The maximum tiles the tiles parameter can hold.
|
||||
/// @return The number of tiles returned in the tiles array.
|
||||
int getTilesAt(const int x, const int y,
|
||||
dtMeshTile const** tiles, const int maxTiles) const;
|
||||
|
||||
/// Gets the tile reference for the tile at specified grid location.
|
||||
/// @param[in] x The tile's x-location. (x, y, layer)
|
||||
/// @param[in] y The tile's y-location. (x, y, layer)
|
||||
/// @param[in] layer The tile's layer. (x, y, layer)
|
||||
/// @return The tile reference of the tile, or 0 if there is none.
|
||||
dtTileRef getTileRefAt(int x, int y, int layer) const;
|
||||
|
||||
/// Gets the tile reference for the specified tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The tile reference of the tile.
|
||||
dtTileRef getTileRef(const dtMeshTile* tile) const;
|
||||
|
||||
/// Gets the tile for the specified tile reference.
|
||||
/// @param[in] ref The tile reference of the tile to retrieve.
|
||||
/// @return The tile for the specified reference, or null if the
|
||||
/// reference is invalid.
|
||||
const dtMeshTile* getTileByRef(dtTileRef ref) const;
|
||||
|
||||
/// The maximum number of tiles supported by the navigation mesh.
|
||||
/// @return The maximum number of tiles supported by the navigation mesh.
|
||||
int getMaxTiles() const;
|
||||
|
||||
/// Gets the tile at the specified index.
|
||||
/// @param[in] i The tile index. [Limit: 0 >= index < #getMaxTiles()]
|
||||
/// @return The tile at the specified index.
|
||||
const dtMeshTile* getTile(int i) const;
|
||||
|
||||
/// Gets the tile and polygon for the specified polygon reference.
|
||||
/// @param[in] ref The reference for the a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const;
|
||||
|
||||
/// Returns the tile and polygon for the specified polygon reference.
|
||||
/// @param[in] ref A known valid reference for a polygon.
|
||||
/// @param[out] tile The tile containing the polygon.
|
||||
/// @param[out] poly The polygon.
|
||||
void getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const;
|
||||
|
||||
/// Checks the validity of a polygon reference.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @return True if polygon reference is valid for the navigation mesh.
|
||||
bool isValidPolyRef(dtPolyRef ref) const;
|
||||
|
||||
/// Gets the polygon reference for the tile's base polygon.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The polygon reference for the base polygon in the specified tile.
|
||||
dtPolyRef getPolyRefBase(const dtMeshTile* tile) const;
|
||||
|
||||
/// Gets the endpoints for an off-mesh connection, ordered by "direction of travel".
|
||||
/// @param[in] prevRef The reference of the polygon before the connection.
|
||||
/// @param[in] polyRef The reference of the off-mesh connection polygon.
|
||||
/// @param[out] startPos The start position of the off-mesh connection. [(x, y, z)]
|
||||
/// @param[out] endPos The end position of the off-mesh connection. [(x, y, z)]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const;
|
||||
|
||||
/// Gets the specified off-mesh connection.
|
||||
/// @param[in] ref The polygon reference of the off-mesh connection.
|
||||
/// @return The specified off-mesh connection, or null if the polygon reference is not valid.
|
||||
const dtOffMeshConnection* getOffMeshConnectionByRef(dtPolyRef ref) const;
|
||||
|
||||
/// @}
|
||||
|
||||
/// @{
|
||||
/// @name State Management
|
||||
/// These functions do not effect #dtTileRef or #dtPolyRef's.
|
||||
|
||||
/// Sets the user defined flags for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] flags The new flags for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus setPolyFlags(dtPolyRef ref, unsigned short flags);
|
||||
|
||||
/// Gets the user defined flags for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultFlags The polygon flags.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const;
|
||||
|
||||
/// Sets the user defined area for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[in] area The new area id for the polygon. [Limit: < #DT_MAX_AREAS]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus setPolyArea(dtPolyRef ref, unsigned char area);
|
||||
|
||||
/// Gets the user defined area for the specified polygon.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @param[out] resultArea The area id for the polygon.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus getPolyArea(dtPolyRef ref, unsigned char* resultArea) const;
|
||||
|
||||
/// Gets the size of the buffer required by #storeTileState to store the specified tile's state.
|
||||
/// @param[in] tile The tile.
|
||||
/// @return The size of the buffer required to store the state.
|
||||
int getTileStateSize(const dtMeshTile* tile) const;
|
||||
|
||||
/// Stores the non-structural state of the tile in the specified buffer. (Flags, area ids, etc.)
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[out] data The buffer to store the tile's state in.
|
||||
/// @param[in] maxDataSize The size of the data buffer. [Limit: >= #getTileStateSize]
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const;
|
||||
|
||||
/// Restores the state of the tile.
|
||||
/// @param[in] tile The tile.
|
||||
/// @param[in] data The new state. (Obtained from #storeTileState.)
|
||||
/// @param[in] maxDataSize The size of the state within the data buffer.
|
||||
/// @return The status flags for the operation.
|
||||
dtStatus restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize);
|
||||
|
||||
/// @}
|
||||
|
||||
/// @{
|
||||
/// @name Encoding and Decoding
|
||||
/// These functions are generally meant for internal use only.
|
||||
|
||||
/// Derives a standard polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] salt The tile's salt value.
|
||||
/// @param[in] it The index of the tile.
|
||||
/// @param[in] ip The index of the polygon within the tile.
|
||||
inline dtPolyRef encodePolyId(unsigned int salt, unsigned int it, unsigned int ip) const
|
||||
{
|
||||
#ifdef DT_POLYREF64
|
||||
return ((dtPolyRef)salt << (DT_POLY_BITS+DT_TILE_BITS)) | ((dtPolyRef)it << DT_POLY_BITS) | (dtPolyRef)ip;
|
||||
#else
|
||||
return ((dtPolyRef)salt << (m_polyBits+m_tileBits)) | ((dtPolyRef)it << m_polyBits) | (dtPolyRef)ip;
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Decodes a standard polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference to decode.
|
||||
/// @param[out] salt The tile's salt value.
|
||||
/// @param[out] it The index of the tile.
|
||||
/// @param[out] ip The index of the polygon within the tile.
|
||||
/// @see #encodePolyId
|
||||
inline void decodePolyId(dtPolyRef ref, unsigned int& salt, unsigned int& it, unsigned int& ip) const
|
||||
{
|
||||
#ifdef DT_POLYREF64
|
||||
const dtPolyRef saltMask = ((dtPolyRef)1<<DT_SALT_BITS)-1;
|
||||
const dtPolyRef tileMask = ((dtPolyRef)1<<DT_TILE_BITS)-1;
|
||||
const dtPolyRef polyMask = ((dtPolyRef)1<<DT_POLY_BITS)-1;
|
||||
salt = (unsigned int)((ref >> (DT_POLY_BITS+DT_TILE_BITS)) & saltMask);
|
||||
it = (unsigned int)((ref >> DT_POLY_BITS) & tileMask);
|
||||
ip = (unsigned int)(ref & polyMask);
|
||||
#else
|
||||
const dtPolyRef saltMask = ((dtPolyRef)1<<m_saltBits)-1;
|
||||
const dtPolyRef tileMask = ((dtPolyRef)1<<m_tileBits)-1;
|
||||
const dtPolyRef polyMask = ((dtPolyRef)1<<m_polyBits)-1;
|
||||
salt = (unsigned int)((ref >> (m_polyBits+m_tileBits)) & saltMask);
|
||||
it = (unsigned int)((ref >> m_polyBits) & tileMask);
|
||||
ip = (unsigned int)(ref & polyMask);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Extracts a tile's salt value from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdSalt(dtPolyRef ref) const
|
||||
{
|
||||
#ifdef DT_POLYREF64
|
||||
const dtPolyRef saltMask = ((dtPolyRef)1<<DT_SALT_BITS)-1;
|
||||
return (unsigned int)((ref >> (DT_POLY_BITS+DT_TILE_BITS)) & saltMask);
|
||||
#else
|
||||
const dtPolyRef saltMask = ((dtPolyRef)1<<m_saltBits)-1;
|
||||
return (unsigned int)((ref >> (m_polyBits+m_tileBits)) & saltMask);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Extracts the tile's index from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdTile(dtPolyRef ref) const
|
||||
{
|
||||
#ifdef DT_POLYREF64
|
||||
const dtPolyRef tileMask = ((dtPolyRef)1<<DT_TILE_BITS)-1;
|
||||
return (unsigned int)((ref >> DT_POLY_BITS) & tileMask);
|
||||
#else
|
||||
const dtPolyRef tileMask = ((dtPolyRef)1<<m_tileBits)-1;
|
||||
return (unsigned int)((ref >> m_polyBits) & tileMask);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// Extracts the polygon's index (within its tile) from the specified polygon reference.
|
||||
/// @note This function is generally meant for internal use only.
|
||||
/// @param[in] ref The polygon reference.
|
||||
/// @see #encodePolyId
|
||||
inline unsigned int decodePolyIdPoly(dtPolyRef ref) const
|
||||
{
|
||||
#ifdef DT_POLYREF64
|
||||
const dtPolyRef polyMask = ((dtPolyRef)1<<DT_POLY_BITS)-1;
|
||||
return (unsigned int)(ref & polyMask);
|
||||
#else
|
||||
const dtPolyRef polyMask = ((dtPolyRef)1<<m_polyBits)-1;
|
||||
return (unsigned int)(ref & polyMask);
|
||||
#endif
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
dtNavMesh(const dtNavMesh&);
|
||||
dtNavMesh& operator=(const dtNavMesh&);
|
||||
|
||||
/// Returns pointer to tile in the tile array.
|
||||
dtMeshTile* getTile(int i);
|
||||
|
||||
/// Returns neighbour tile based on side.
|
||||
int getTilesAt(const int x, const int y,
|
||||
dtMeshTile** tiles, const int maxTiles) const;
|
||||
|
||||
/// Returns neighbour tile based on side.
|
||||
int getNeighbourTilesAt(const int x, const int y, const int side,
|
||||
dtMeshTile** tiles, const int maxTiles) const;
|
||||
|
||||
/// Returns all polygons in neighbour tile based on portal defined by the segment.
|
||||
int findConnectingPolys(const float* va, const float* vb,
|
||||
const dtMeshTile* tile, int side,
|
||||
dtPolyRef* con, float* conarea, int maxcon) const;
|
||||
|
||||
/// Builds internal polygons links for a tile.
|
||||
void connectIntLinks(dtMeshTile* tile);
|
||||
/// Builds internal polygons links for a tile.
|
||||
void baseOffMeshLinks(dtMeshTile* tile);
|
||||
|
||||
/// Builds external polygon links for a tile.
|
||||
void connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side);
|
||||
/// Builds external polygon links for a tile.
|
||||
void connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side);
|
||||
|
||||
/// Removes external links at specified side.
|
||||
void unconnectLinks(dtMeshTile* tile, dtMeshTile* target);
|
||||
|
||||
|
||||
// TODO: These methods are duplicates from dtNavMeshQuery, but are needed for off-mesh connection finding.
|
||||
|
||||
/// Queries polygons within a tile.
|
||||
int queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
|
||||
dtPolyRef* polys, const int maxPolys) const;
|
||||
/// Find nearest polygon within a tile.
|
||||
dtPolyRef findNearestPolyInTile(const dtMeshTile* tile, const float* center,
|
||||
const float* extents, float* nearestPt) const;
|
||||
/// Returns closest point on polygon.
|
||||
void closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const;
|
||||
|
||||
dtNavMeshParams m_params; ///< Current initialization params. TODO: do not store this info twice.
|
||||
float m_orig[3]; ///< Origin of the tile (0,0)
|
||||
float m_tileWidth, m_tileHeight; ///< Dimensions of each tile.
|
||||
int m_maxTiles; ///< Max number of tiles.
|
||||
int m_tileLutSize; ///< Tile hash lookup size (must be pot).
|
||||
int m_tileLutMask; ///< Tile hash lookup mask.
|
||||
|
||||
dtMeshTile** m_posLookup; ///< Tile hash lookup.
|
||||
dtMeshTile* m_nextFree; ///< Freelist of tiles.
|
||||
dtMeshTile* m_tiles; ///< List of tiles.
|
||||
|
||||
#ifndef DT_POLYREF64
|
||||
unsigned int m_saltBits; ///< Number of salt bits in the tile ID.
|
||||
unsigned int m_tileBits; ///< Number of tile bits in the tile ID.
|
||||
unsigned int m_polyBits; ///< Number of poly bits in the tile ID.
|
||||
#endif
|
||||
};
|
||||
|
||||
/// Allocates a navigation mesh object using the Detour allocator.
|
||||
/// @return A navigation mesh that is ready for initialization, or null on failure.
|
||||
/// @ingroup detour
|
||||
dtNavMesh* dtAllocNavMesh();
|
||||
|
||||
/// Frees the specified navigation mesh object using the Detour allocator.
|
||||
/// @param[in] navmesh A navigation mesh allocated using #dtAllocNavMesh
|
||||
/// @ingroup detour
|
||||
void dtFreeNavMesh(dtNavMesh* navmesh);
|
||||
|
||||
#endif // DETOURNAVMESH_H
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@typedef dtPolyRef
|
||||
@par
|
||||
|
||||
Polygon references are subject to the same invalidate/preserve/restore
|
||||
rules that apply to #dtTileRef's. If the #dtTileRef for the polygon's
|
||||
tile changes, the polygon reference becomes invalid.
|
||||
|
||||
Changing a polygon's flags, area id, etc. does not impact its polygon
|
||||
reference.
|
||||
|
||||
@typedef dtTileRef
|
||||
@par
|
||||
|
||||
The following changes will invalidate a tile reference:
|
||||
|
||||
- The referenced tile has been removed from the navigation mesh.
|
||||
- The navigation mesh has been initialized using a different set
|
||||
of #dtNavMeshParams.
|
||||
|
||||
A tile reference is preserved/restored if the tile is added to a navigation
|
||||
mesh initialized with the original #dtNavMeshParams and is added at the
|
||||
original reference location. (E.g. The lastRef parameter is used with
|
||||
dtNavMesh::addTile.)
|
||||
|
||||
Basically, if the storage structure of a tile changes, its associated
|
||||
tile reference changes.
|
||||
|
||||
|
||||
@var unsigned short dtPoly::neis[DT_VERTS_PER_POLYGON]
|
||||
@par
|
||||
|
||||
Each entry represents data for the edge starting at the vertex of the same index.
|
||||
E.g. The entry at index n represents the edge data for vertex[n] to vertex[n+1].
|
||||
|
||||
A value of zero indicates the edge has no polygon connection. (It makes up the
|
||||
border of the navigation mesh.)
|
||||
|
||||
The information can be extracted as follows:
|
||||
@code
|
||||
neighborRef = neis[n] & 0xff; // Get the neighbor polygon reference.
|
||||
|
||||
if (neis[n] & #DT_EX_LINK)
|
||||
{
|
||||
// The edge is an external (portal) edge.
|
||||
}
|
||||
@endcode
|
||||
|
||||
@var float dtMeshHeader::bvQuantFactor
|
||||
@par
|
||||
|
||||
This value is used for converting between world and bounding volume coordinates.
|
||||
For example:
|
||||
@code
|
||||
const float cs = 1.0f / tile->header->bvQuantFactor;
|
||||
const dtBVNode* n = &tile->bvTree[i];
|
||||
if (n->i >= 0)
|
||||
{
|
||||
// This is a leaf node.
|
||||
float worldMinX = tile->header->bmin[0] + n->bmin[0]*cs;
|
||||
float worldMinY = tile->header->bmin[0] + n->bmin[1]*cs;
|
||||
// Etc...
|
||||
}
|
||||
@endcode
|
||||
|
||||
@struct dtMeshTile
|
||||
@par
|
||||
|
||||
Tiles generally only exist within the context of a dtNavMesh object.
|
||||
|
||||
Some tile content is optional. For example, a tile may not contain any
|
||||
off-mesh connections. In this case the associated pointer will be null.
|
||||
|
||||
If a detail mesh exists it will share vertices with the base polygon mesh.
|
||||
Only the vertices unique to the detail mesh will be stored in #detailVerts.
|
||||
|
||||
@warning Tiles returned by a dtNavMesh object are not guarenteed to be populated.
|
||||
For example: The tile at a location might not have been loaded yet, or may have been removed.
|
||||
In this case, pointers will be null. So if in doubt, check the polygon count in the
|
||||
tile's header to determine if a tile has polygons defined.
|
||||
|
||||
@var float dtOffMeshConnection::pos[6]
|
||||
@par
|
||||
|
||||
For a properly built navigation mesh, vertex A will always be within the bounds of the mesh.
|
||||
Vertex B is not required to be within the bounds of the mesh.
|
||||
|
||||
*/
|
||||
149
libs/recast/detour/include/DetourNavMeshBuilder.h
Normal file
149
libs/recast/detour/include/DetourNavMeshBuilder.h
Normal file
@ -0,0 +1,149 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURNAVMESHBUILDER_H
|
||||
#define DETOURNAVMESHBUILDER_H
|
||||
|
||||
#include "DetourAlloc.h"
|
||||
|
||||
/// Represents the source data used to build an navigation mesh tile.
|
||||
/// @ingroup detour
|
||||
struct dtNavMeshCreateParams
|
||||
{
|
||||
|
||||
/// @name Polygon Mesh Attributes
|
||||
/// Used to create the base navigation graph.
|
||||
/// See #rcPolyMesh for details related to these attributes.
|
||||
/// @{
|
||||
|
||||
const unsigned short* verts; ///< The polygon mesh vertices. [(x, y, z) * #vertCount] [Unit: vx]
|
||||
int vertCount; ///< The number vertices in the polygon mesh. [Limit: >= 3]
|
||||
const unsigned short* polys; ///< The polygon data. [Size: #polyCount * 2 * #nvp]
|
||||
const unsigned short* polyFlags; ///< The user defined flags assigned to each polygon. [Size: #polyCount]
|
||||
const unsigned char* polyAreas; ///< The user defined area ids assigned to each polygon. [Size: #polyCount]
|
||||
int polyCount; ///< Number of polygons in the mesh. [Limit: >= 1]
|
||||
int nvp; ///< Number maximum number of vertices per polygon. [Limit: >= 3]
|
||||
|
||||
/// @}
|
||||
/// @name Height Detail Attributes (Optional)
|
||||
/// See #rcPolyMeshDetail for details related to these attributes.
|
||||
/// @{
|
||||
|
||||
const unsigned int* detailMeshes; ///< The height detail sub-mesh data. [Size: 4 * #polyCount]
|
||||
const float* detailVerts; ///< The detail mesh vertices. [Size: 3 * #detailVertsCount] [Unit: wu]
|
||||
int detailVertsCount; ///< The number of vertices in the detail mesh.
|
||||
const unsigned char* detailTris; ///< The detail mesh triangles. [Size: 4 * #detailTriCount]
|
||||
int detailTriCount; ///< The number of triangles in the detail mesh.
|
||||
|
||||
/// @}
|
||||
/// @name Off-Mesh Connections Attributes (Optional)
|
||||
/// Used to define a custom point-to-point edge within the navigation graph, an
|
||||
/// off-mesh connection is a user defined traversable connection made up to two vertices,
|
||||
/// at least one of which resides within a navigation mesh polygon.
|
||||
/// @{
|
||||
|
||||
/// Off-mesh connection vertices. [(ax, ay, az, bx, by, bz) * #offMeshConCount] [Unit: wu]
|
||||
const float* offMeshConVerts;
|
||||
/// Off-mesh connection radii. [Size: #offMeshConCount] [Unit: wu]
|
||||
const float* offMeshConRad;
|
||||
/// User defined flags assigned to the off-mesh connections. [Size: #offMeshConCount]
|
||||
const unsigned short* offMeshConFlags;
|
||||
/// User defined area ids assigned to the off-mesh connections. [Size: #offMeshConCount]
|
||||
const unsigned char* offMeshConAreas;
|
||||
/// The permitted travel direction of the off-mesh connections. [Size: #offMeshConCount]
|
||||
///
|
||||
/// 0 = Travel only from endpoint A to endpoint B.<br/>
|
||||
/// #DT_OFFMESH_CON_BIDIR = Bidirectional travel.
|
||||
const unsigned char* offMeshConDir;
|
||||
/// The user defined ids of the off-mesh connection. [Size: #offMeshConCount]
|
||||
const unsigned int* offMeshConUserID;
|
||||
/// The number of off-mesh connections. [Limit: >= 0]
|
||||
int offMeshConCount;
|
||||
|
||||
/// @}
|
||||
/// @name Tile Attributes
|
||||
/// @note The tile grid/layer data can be left at zero if the destination is a single tile mesh.
|
||||
/// @{
|
||||
|
||||
unsigned int userId; ///< The user defined id of the tile.
|
||||
int tileX; ///< The tile's x-grid location within the multi-tile destination mesh. (Along the x-axis.)
|
||||
int tileY; ///< The tile's y-grid location within the multi-tile desitation mesh. (Along the z-axis.)
|
||||
int tileLayer; ///< The tile's layer within the layered destination mesh. [Limit: >= 0] (Along the y-axis.)
|
||||
float bmin[3]; ///< The minimum bounds of the tile. [(x, y, z)] [Unit: wu]
|
||||
float bmax[3]; ///< The maximum bounds of the tile. [(x, y, z)] [Unit: wu]
|
||||
|
||||
/// @}
|
||||
/// @name General Configuration Attributes
|
||||
/// @{
|
||||
|
||||
float walkableHeight; ///< The agent height. [Unit: wu]
|
||||
float walkableRadius; ///< The agent radius. [Unit: wu]
|
||||
float walkableClimb; ///< The agent maximum traversable ledge. (Up/Down) [Unit: wu]
|
||||
float cs; ///< The xz-plane cell size of the polygon mesh. [Limit: > 0] [Unit: wu]
|
||||
float ch; ///< The y-axis cell height of the polygon mesh. [Limit: > 0] [Unit: wu]
|
||||
|
||||
/// True if a bounding volume tree should be built for the tile.
|
||||
/// @note The BVTree is not normally needed for layered navigation meshes.
|
||||
bool buildBvTree;
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
/// Builds navigation mesh tile data from the provided tile creation data.
|
||||
/// @ingroup detour
|
||||
/// @param[in] params Tile creation data.
|
||||
/// @param[out] outData The resulting tile data.
|
||||
/// @param[out] outDataSize The size of the tile data array.
|
||||
/// @return True if the tile data was successfully created.
|
||||
bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize);
|
||||
|
||||
/// Swaps the endianess of the tile data's header (#dtMeshHeader).
|
||||
/// @param[in,out] data The tile data array.
|
||||
/// @param[in] dataSize The size of the data array.
|
||||
bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int dataSize);
|
||||
|
||||
/// Swaps endianess of the tile data.
|
||||
/// @param[in,out] data The tile data array.
|
||||
/// @param[in] dataSize The size of the data array.
|
||||
bool dtNavMeshDataSwapEndian(unsigned char* data, const int dataSize);
|
||||
|
||||
#endif // DETOURNAVMESHBUILDER_H
|
||||
|
||||
// This section contains detailed documentation for members that don't have
|
||||
// a source file. It reduces clutter in the main section of the header.
|
||||
|
||||
/**
|
||||
|
||||
@struct dtNavMeshCreateParams
|
||||
@par
|
||||
|
||||
This structure is used to marshal data between the Recast mesh generation pipeline and Detour navigation components.
|
||||
|
||||
See the rcPolyMesh and rcPolyMeshDetail documentation for detailed information related to mesh structure.
|
||||
|
||||
Units are usually in voxels (vx) or world units (wu). The units for voxels, grid size, and cell size
|
||||
are all based on the values of #cs and #ch.
|
||||
|
||||
The standard navigation mesh build process is to create tile data using dtCreateNavMeshData, then add the tile
|
||||
to a navigation mesh using either the dtNavMesh single tile <tt>init()</tt> function or the dtNavMesh::addTile()
|
||||
function.
|
||||
|
||||
@see dtCreateNavMeshData
|
||||
|
||||
*/
|
||||
|
||||
575
libs/recast/detour/include/DetourNavMeshQuery.h
Normal file
575
libs/recast/detour/include/DetourNavMeshQuery.h
Normal file
@ -0,0 +1,575 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURNAVMESHQUERY_H
|
||||
#define DETOURNAVMESHQUERY_H
|
||||
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourStatus.h"
|
||||
|
||||
|
||||
// Define DT_VIRTUAL_QUERYFILTER if you wish to derive a custom filter from dtQueryFilter.
|
||||
// On certain platforms indirect or virtual function call is expensive. The default
|
||||
// setting is to use non-virtual functions, the actual implementations of the functions
|
||||
// are declared as inline for maximum speed.
|
||||
|
||||
//#define DT_VIRTUAL_QUERYFILTER 1
|
||||
|
||||
/// Defines polygon filtering and traversal costs for navigation mesh query operations.
|
||||
/// @ingroup detour
|
||||
class dtQueryFilter
|
||||
{
|
||||
float m_areaCost[DT_MAX_AREAS]; ///< Cost per area type. (Used by default implementation.)
|
||||
unsigned short m_includeFlags; ///< Flags for polygons that can be visited. (Used by default implementation.)
|
||||
unsigned short m_excludeFlags; ///< Flags for polygons that should not be visted. (Used by default implementation.)
|
||||
|
||||
public:
|
||||
dtQueryFilter();
|
||||
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual ~dtQueryFilter() { }
|
||||
#endif
|
||||
|
||||
/// Returns true if the polygon can be visited. (I.e. Is traversable.)
|
||||
/// @param[in] ref The reference id of the polygon test.
|
||||
/// @param[in] tile The tile containing the polygon.
|
||||
/// @param[in] poly The polygon to test.
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual bool passFilter(const dtPolyRef ref,
|
||||
const dtMeshTile* tile,
|
||||
const dtPoly* poly) const;
|
||||
#else
|
||||
bool passFilter(const dtPolyRef ref,
|
||||
const dtMeshTile* tile,
|
||||
const dtPoly* poly) const;
|
||||
#endif
|
||||
|
||||
/// Returns cost to move from the beginning to the end of a line segment
|
||||
/// that is fully contained within a polygon.
|
||||
/// @param[in] pa The start position on the edge of the previous and current polygon. [(x, y, z)]
|
||||
/// @param[in] pb The end position on the edge of the current and next polygon. [(x, y, z)]
|
||||
/// @param[in] prevRef The reference id of the previous polygon. [opt]
|
||||
/// @param[in] prevTile The tile containing the previous polygon. [opt]
|
||||
/// @param[in] prevPoly The previous polygon. [opt]
|
||||
/// @param[in] curRef The reference id of the current polygon.
|
||||
/// @param[in] curTile The tile containing the current polygon.
|
||||
/// @param[in] curPoly The current polygon.
|
||||
/// @param[in] nextRef The refernece id of the next polygon. [opt]
|
||||
/// @param[in] nextTile The tile containing the next polygon. [opt]
|
||||
/// @param[in] nextPoly The next polygon. [opt]
|
||||
#ifdef DT_VIRTUAL_QUERYFILTER
|
||||
virtual float getCost(const float* pa, const float* pb,
|
||||
const dtPolyRef prevRef, const dtMeshTile* prevTile, const dtPoly* prevPoly,
|
||||
const dtPolyRef curRef, const dtMeshTile* curTile, const dtPoly* curPoly,
|
||||
const dtPolyRef nextRef, const dtMeshTile* nextTile, const dtPoly* nextPoly) const;
|
||||
#else
|
||||
float getCost(const float* pa, const float* pb,
|
||||
const dtPolyRef prevRef, const dtMeshTile* prevTile, const dtPoly* prevPoly,
|
||||
const dtPolyRef curRef, const dtMeshTile* curTile, const dtPoly* curPoly,
|
||||
const dtPolyRef nextRef, const dtMeshTile* nextTile, const dtPoly* nextPoly) const;
|
||||
#endif
|
||||
|
||||
/// @name Getters and setters for the default implementation data.
|
||||
///@{
|
||||
|
||||
/// Returns the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @returns The traversal cost of the area.
|
||||
inline float getAreaCost(const int i) const { return m_areaCost[i]; }
|
||||
|
||||
/// Sets the traversal cost of the area.
|
||||
/// @param[in] i The id of the area.
|
||||
/// @param[in] cost The new cost of traversing the area.
|
||||
inline void setAreaCost(const int i, const float cost) { m_areaCost[i] = cost; }
|
||||
|
||||
/// Returns the include flags for the filter.
|
||||
/// Any polygons that include one or more of these flags will be
|
||||
/// included in the operation.
|
||||
inline unsigned short getIncludeFlags() const { return m_includeFlags; }
|
||||
|
||||
/// Sets the include flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
inline void setIncludeFlags(const unsigned short flags) { m_includeFlags = flags; }
|
||||
|
||||
/// Returns the exclude flags for the filter.
|
||||
/// Any polygons that include one ore more of these flags will be
|
||||
/// excluded from the operation.
|
||||
inline unsigned short getExcludeFlags() const { return m_excludeFlags; }
|
||||
|
||||
/// Sets the exclude flags for the filter.
|
||||
/// @param[in] flags The new flags.
|
||||
inline void setExcludeFlags(const unsigned short flags) { m_excludeFlags = flags; }
|
||||
|
||||
///@}
|
||||
|
||||
};
|
||||
|
||||
|
||||
|
||||
/// Provides information about raycast hit
|
||||
/// filled by dtNavMeshQuery::raycast
|
||||
/// @ingroup detour
|
||||
struct dtRaycastHit
|
||||
{
|
||||
/// The hit parameter. (FLT_MAX if no wall hit.)
|
||||
float t;
|
||||
|
||||
/// hitNormal The normal of the nearest wall hit. [(x, y, z)]
|
||||
float hitNormal[3];
|
||||
|
||||
/// The index of the edge on the final polygon where the wall was hit.
|
||||
int hitEdgeIndex;
|
||||
|
||||
/// Pointer to an array of reference ids of the visited polygons. [opt]
|
||||
dtPolyRef* path;
|
||||
|
||||
/// The number of visited polygons. [opt]
|
||||
int pathCount;
|
||||
|
||||
/// The maximum number of polygons the @p path array can hold.
|
||||
int maxPath;
|
||||
|
||||
/// The cost of the path until hit.
|
||||
float pathCost;
|
||||
};
|
||||
|
||||
/// Provides custom polygon query behavior.
|
||||
/// Used by dtNavMeshQuery::queryPolygons.
|
||||
/// @ingroup detour
|
||||
class dtPolyQuery
|
||||
{
|
||||
public:
|
||||
virtual ~dtPolyQuery() { }
|
||||
|
||||
/// Called for each batch of unique polygons touched by the search area in dtNavMeshQuery::queryPolygons.
|
||||
/// This can be called multiple times for a single query.
|
||||
virtual void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count) = 0;
|
||||
};
|
||||
|
||||
/// Provides the ability to perform pathfinding related queries against
|
||||
/// a navigation mesh.
|
||||
/// @ingroup detour
|
||||
class dtNavMeshQuery
|
||||
{
|
||||
public:
|
||||
dtNavMeshQuery();
|
||||
~dtNavMeshQuery();
|
||||
|
||||
/// Initializes the query object.
|
||||
/// @param[in] nav Pointer to the dtNavMesh object to use for all queries.
|
||||
/// @param[in] maxNodes Maximum number of search nodes. [Limits: 0 < value <= 65535]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus init(const dtNavMesh* nav, const int maxNodes);
|
||||
|
||||
/// @name Standard Pathfinding Functions
|
||||
// /@{
|
||||
|
||||
/// Finds a path from the start polygon to the end polygon.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
dtStatus findPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
/// Finds the straight path from the start to the end position within the polygon corridor.
|
||||
/// @param[in] startPos Path start position. [(x, y, z)]
|
||||
/// @param[in] endPos Path end position. [(x, y, z)]
|
||||
/// @param[in] path An array of polygon references that represent the path corridor.
|
||||
/// @param[in] pathSize The number of polygons in the @p path array.
|
||||
/// @param[out] straightPath Points describing the straight path. [(x, y, z) * @p straightPathCount].
|
||||
/// @param[out] straightPathFlags Flags describing each point. (See: #dtStraightPathFlags) [opt]
|
||||
/// @param[out] straightPathRefs The reference id of the polygon that is being entered at each point. [opt]
|
||||
/// @param[out] straightPathCount The number of points in the straight path.
|
||||
/// @param[in] maxStraightPath The maximum number of points the straight path arrays can hold. [Limit: > 0]
|
||||
/// @param[in] options Query options. (see: #dtStraightPathOptions)
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findStraightPath(const float* startPos, const float* endPos,
|
||||
const dtPolyRef* path, const int pathSize,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath, const int options = 0) const;
|
||||
|
||||
///@}
|
||||
/// @name Sliced Pathfinding Functions
|
||||
/// Common use case:
|
||||
/// -# Call initSlicedFindPath() to initialize the sliced path query.
|
||||
/// -# Call updateSlicedFindPath() until it returns complete.
|
||||
/// -# Call finalizeSlicedFindPath() to get the path.
|
||||
///@{
|
||||
|
||||
/// Intializes a sliced path query.
|
||||
/// @param[in] startRef The refrence id of the start polygon.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[in] startPos A position within the start polygon. [(x, y, z)]
|
||||
/// @param[in] endPos A position within the end polygon. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] options query options (see: #dtFindPathOptions)
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef,
|
||||
const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter, const unsigned int options = 0);
|
||||
|
||||
/// Updates an in-progress sliced path query.
|
||||
/// @param[in] maxIter The maximum number of iterations to perform.
|
||||
/// @param[out] doneIters The actual number of iterations completed. [opt]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus updateSlicedFindPath(const int maxIter, int* doneIters);
|
||||
|
||||
/// Finalizes and returns the results of a sliced path query.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath);
|
||||
|
||||
/// Finalizes and returns the results of an incomplete sliced path query, returning the path to the furthest
|
||||
/// polygon on the existing path that was visited during the search.
|
||||
/// @param[in] existing An array of polygon references for the existing path.
|
||||
/// @param[in] existingSize The number of polygon in the @p existing array.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The max number of polygons the @p path array can hold. [Limit: >= 1]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
|
||||
dtPolyRef* path, int* pathCount, const int maxPath);
|
||||
|
||||
///@}
|
||||
/// @name Dijkstra Search Functions
|
||||
/// @{
|
||||
|
||||
/// Finds the polygons along the navigation graph that touch the specified circle.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from @p centerPos to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found. [opt]
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// Finds the polygons along the naviation graph that touch the specified convex polygon.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] verts The vertices describing the convex polygon. (CCW)
|
||||
/// [(x, y, z) * @p nverts]
|
||||
/// @param[in] nverts The number of vertices in the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the search polygon. [opt]
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result. Zero if a
|
||||
/// result polygon has no parent. [opt]
|
||||
/// @param[out] resultCost The search cost from the centroid point to the polygon. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// Gets a path from the explored nodes in the previous search.
|
||||
/// @param[in] endRef The reference id of the end polygon.
|
||||
/// @param[out] path An ordered list of polygon references representing the path. (Start to end.)
|
||||
/// [(polyRef) * @p pathCount]
|
||||
/// @param[out] pathCount The number of polygons returned in the @p path array.
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold. [Limit: >= 0]
|
||||
/// @returns The status flags. Returns DT_FAILURE | DT_INVALID_PARAM if any parameter is wrong, or if
|
||||
/// @p endRef was not explored in the previous search. Returns DT_SUCCESS | DT_BUFFER_TOO_SMALL
|
||||
/// if @p path cannot contain the entire path. In this case it is filled to capacity with a partial path.
|
||||
/// Otherwise returns DT_SUCCESS.
|
||||
/// @remarks The result of this function depends on the state of the query object. For that reason it should only
|
||||
/// be used immediately after one of the two Dijkstra searches, findPolysAroundCircle or findPolysAroundShape.
|
||||
dtStatus getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const;
|
||||
|
||||
/// @}
|
||||
/// @name Local Query Functions
|
||||
///@{
|
||||
|
||||
/// Finds the polygon nearest to the specified center point.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] nearestRef The reference id of the nearest polygon.
|
||||
/// @param[out] nearestPt The nearest point on the polygon. [opt] [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findNearestPoly(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* nearestRef, float* nearestPt) const;
|
||||
|
||||
/// Finds polygons that overlap the search box.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] polys The reference ids of the polygons that overlap the query box.
|
||||
/// @param[out] polyCount The number of polygons in the search result.
|
||||
/// @param[in] maxPolys The maximum number of polygons the search result can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus queryPolygons(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* polys, int* polyCount, const int maxPolys) const;
|
||||
|
||||
/// Finds polygons that overlap the search box.
|
||||
/// @param[in] center The center of the search box. [(x, y, z)]
|
||||
/// @param[in] extents The search distance along each axis. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] query The query. Polygons found will be batched together and passed to this query.
|
||||
dtStatus queryPolygons(const float* center, const float* extents,
|
||||
const dtQueryFilter* filter, dtPolyQuery* query) const;
|
||||
|
||||
/// Finds the non-overlapping navigation polygons in the local neighbourhood around the center position.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the query circle. [(x, y, z)]
|
||||
/// @param[in] radius The radius of the query circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultRef The reference ids of the polygons touched by the circle.
|
||||
/// @param[out] resultParent The reference ids of the parent polygons for each result.
|
||||
/// Zero if a result polygon has no parent. [opt]
|
||||
/// @param[out] resultCount The number of polygons found.
|
||||
/// @param[in] maxResult The maximum number of polygons the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius,
|
||||
const dtQueryFilter* filter,
|
||||
dtPolyRef* resultRef, dtPolyRef* resultParent,
|
||||
int* resultCount, const int maxResult) const;
|
||||
|
||||
/// Moves from the start to the end position constrained to the navigation mesh.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position of the mover within the start polygon. [(x, y, x)]
|
||||
/// @param[in] endPos The desired end position of the mover. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] resultPos The result position of the mover. [(x, y, z)]
|
||||
/// @param[out] visited The reference ids of the polygons visited during the move.
|
||||
/// @param[out] visitedCount The number of polygons visited during the move.
|
||||
/// @param[in] maxVisitedSize The maximum number of polygons the @p visited array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const;
|
||||
|
||||
/// Casts a 'walkability' ray along the surface of the navigation mesh from
|
||||
/// the start position toward the end position.
|
||||
/// @note A wrapper around raycast(..., RaycastHit*). Retained for backward compatibility.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position within the start polygon representing
|
||||
/// the start of the ray. [(x, y, z)]
|
||||
/// @param[in] endPos The position to cast the ray toward. [(x, y, z)]
|
||||
/// @param[out] t The hit parameter. (FLT_MAX if no wall hit.)
|
||||
/// @param[out] hitNormal The normal of the nearest wall hit. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] path The reference ids of the visited polygons. [opt]
|
||||
/// @param[out] pathCount The number of visited polygons. [opt]
|
||||
/// @param[in] maxPath The maximum number of polygons the @p path array can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter,
|
||||
float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const;
|
||||
|
||||
/// Casts a 'walkability' ray along the surface of the navigation mesh from
|
||||
/// the start position toward the end position.
|
||||
/// @param[in] startRef The reference id of the start polygon.
|
||||
/// @param[in] startPos A position within the start polygon representing
|
||||
/// the start of the ray. [(x, y, z)]
|
||||
/// @param[in] endPos The position to cast the ray toward. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] flags govern how the raycast behaves. See dtRaycastOptions
|
||||
/// @param[out] hit Pointer to a raycast hit structure which will be filled by the results.
|
||||
/// @param[in] prevRef parent of start ref. Used during for cost calculation [opt]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
|
||||
const dtQueryFilter* filter, const unsigned int options,
|
||||
dtRaycastHit* hit, dtPolyRef prevRef = 0) const;
|
||||
|
||||
|
||||
/// Finds the distance from the specified position to the nearest polygon wall.
|
||||
/// @param[in] startRef The reference id of the polygon containing @p centerPos.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] maxRadius The radius of the search circle.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] hitDist The distance to the nearest wall from @p centerPos.
|
||||
/// @param[out] hitPos The nearest position on the wall that was hit. [(x, y, z)]
|
||||
/// @param[out] hitNormal The normalized ray formed from the wall point to the
|
||||
/// source point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
||||
const dtQueryFilter* filter,
|
||||
float* hitDist, float* hitPos, float* hitNormal) const;
|
||||
|
||||
/// Returns the segments for the specified polygon, optionally including portals.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[out] segmentVerts The segments. [(ax, ay, az, bx, by, bz) * segmentCount]
|
||||
/// @param[out] segmentRefs The reference ids of each segment's neighbor polygon.
|
||||
/// Or zero if the segment is a wall. [opt] [(parentRef) * @p segmentCount]
|
||||
/// @param[out] segmentCount The number of segments returned.
|
||||
/// @param[in] maxSegments The maximum number of segments the result arrays can hold.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter,
|
||||
float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount,
|
||||
const int maxSegments) const;
|
||||
|
||||
/// Returns random location on navmesh.
|
||||
/// Polygons are chosen weighted by area. The search runs in linear related to number of polygon.
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] frand Function returning a random number [0..1).
|
||||
/// @param[out] randomRef The reference id of the random location.
|
||||
/// @param[out] randomPt The random location.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findRandomPoint(const dtQueryFilter* filter, float (*frand)(),
|
||||
dtPolyRef* randomRef, float* randomPt) const;
|
||||
|
||||
/// Returns random location on navmesh within the reach of specified location.
|
||||
/// Polygons are chosen weighted by area. The search runs in linear related to number of polygon.
|
||||
/// The location is not exactly constrained by the circle, but it limits the visited polygons.
|
||||
/// @param[in] startRef The reference id of the polygon where the search starts.
|
||||
/// @param[in] centerPos The center of the search circle. [(x, y, z)]
|
||||
/// @param[in] filter The polygon filter to apply to the query.
|
||||
/// @param[in] frand Function returning a random number [0..1).
|
||||
/// @param[out] randomRef The reference id of the random location.
|
||||
/// @param[out] randomPt The random location. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius,
|
||||
const dtQueryFilter* filter, float (*frand)(),
|
||||
dtPolyRef* randomRef, float* randomPt) const;
|
||||
|
||||
/// Finds the closest point on the specified polygon.
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point on the polygon. [(x, y, z)]
|
||||
/// @param[out] posOverPoly True of the position is over the polygon.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const;
|
||||
|
||||
/// Returns a point on the boundary closest to the source point if the source point is outside the
|
||||
/// polygon's xz-bounds.
|
||||
/// @param[in] ref The reference id to the polygon.
|
||||
/// @param[in] pos The position to check. [(x, y, z)]
|
||||
/// @param[out] closest The closest point. [(x, y, z)]
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const;
|
||||
|
||||
/// Gets the height of the polygon at the provided position using the height detail. (Most accurate.)
|
||||
/// @param[in] ref The reference id of the polygon.
|
||||
/// @param[in] pos A position within the xz-bounds of the polygon. [(x, y, z)]
|
||||
/// @param[out] height The height at the surface of the polygon.
|
||||
/// @returns The status flags for the query.
|
||||
dtStatus getPolyHeight(dtPolyRef ref, const float* pos, float* height) const;
|
||||
|
||||
/// @}
|
||||
/// @name Miscellaneous Functions
|
||||
/// @{
|
||||
|
||||
/// Returns true if the polygon reference is valid and passes the filter restrictions.
|
||||
/// @param[in] ref The polygon reference to check.
|
||||
/// @param[in] filter The filter to apply.
|
||||
bool isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const;
|
||||
|
||||
/// Returns true if the polygon reference is in the closed list.
|
||||
/// @param[in] ref The reference id of the polygon to check.
|
||||
/// @returns True if the polygon is in closed list.
|
||||
bool isInClosedList(dtPolyRef ref) const;
|
||||
|
||||
/// Gets the node pool.
|
||||
/// @returns The node pool.
|
||||
class dtNodePool* getNodePool() const { return m_nodePool; }
|
||||
|
||||
/// Gets the navigation mesh the query object is using.
|
||||
/// @return The navigation mesh the query object is using.
|
||||
const dtNavMesh* getAttachedNavMesh() const { return m_nav; }
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator
|
||||
dtNavMeshQuery(const dtNavMeshQuery&);
|
||||
dtNavMeshQuery& operator=(const dtNavMeshQuery&);
|
||||
|
||||
/// Queries polygons within a tile.
|
||||
void queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
|
||||
const dtQueryFilter* filter, dtPolyQuery* query) const;
|
||||
|
||||
/// Returns portal points between two polygons.
|
||||
dtStatus getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
|
||||
unsigned char& fromType, unsigned char& toType) const;
|
||||
dtStatus getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
||||
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
||||
float* left, float* right) const;
|
||||
|
||||
/// Returns edge mid point between two polygons.
|
||||
dtStatus getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const;
|
||||
dtStatus getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
|
||||
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
|
||||
float* mid) const;
|
||||
|
||||
// Appends vertex to a straight path
|
||||
dtStatus appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath) const;
|
||||
|
||||
// Appends intermediate portal points to a straight path.
|
||||
dtStatus appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path,
|
||||
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
|
||||
int* straightPathCount, const int maxStraightPath, const int options) const;
|
||||
|
||||
// Gets the path leading to the specified end node.
|
||||
dtStatus getPathToNode(struct dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const;
|
||||
|
||||
const dtNavMesh* m_nav; ///< Pointer to navmesh data.
|
||||
|
||||
struct dtQueryData
|
||||
{
|
||||
dtStatus status;
|
||||
struct dtNode* lastBestNode;
|
||||
float lastBestNodeCost;
|
||||
dtPolyRef startRef, endRef;
|
||||
float startPos[3], endPos[3];
|
||||
const dtQueryFilter* filter;
|
||||
unsigned int options;
|
||||
float raycastLimitSqr;
|
||||
};
|
||||
dtQueryData m_query; ///< Sliced query state.
|
||||
|
||||
class dtNodePool* m_tinyNodePool; ///< Pointer to small node pool.
|
||||
class dtNodePool* m_nodePool; ///< Pointer to node pool.
|
||||
class dtNodeQueue* m_openList; ///< Pointer to open list queue.
|
||||
};
|
||||
|
||||
/// Allocates a query object using the Detour allocator.
|
||||
/// @return An allocated query object, or null on failure.
|
||||
/// @ingroup detour
|
||||
dtNavMeshQuery* dtAllocNavMeshQuery();
|
||||
|
||||
/// Frees the specified query object using the Detour allocator.
|
||||
/// @param[in] query A query object allocated using #dtAllocNavMeshQuery
|
||||
/// @ingroup detour
|
||||
void dtFreeNavMeshQuery(dtNavMeshQuery* query);
|
||||
|
||||
#endif // DETOURNAVMESHQUERY_H
|
||||
168
libs/recast/detour/include/DetourNode.h
Normal file
168
libs/recast/detour/include/DetourNode.h
Normal file
@ -0,0 +1,168 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURNODE_H
|
||||
#define DETOURNODE_H
|
||||
|
||||
#include "DetourNavMesh.h"
|
||||
|
||||
enum dtNodeFlags
|
||||
{
|
||||
DT_NODE_OPEN = 0x01,
|
||||
DT_NODE_CLOSED = 0x02,
|
||||
DT_NODE_PARENT_DETACHED = 0x04, // parent of the node is not adjacent. Found using raycast.
|
||||
};
|
||||
|
||||
typedef unsigned short dtNodeIndex;
|
||||
static const dtNodeIndex DT_NULL_IDX = (dtNodeIndex)~0;
|
||||
|
||||
static const int DT_NODE_PARENT_BITS = 24;
|
||||
static const int DT_NODE_STATE_BITS = 2;
|
||||
struct dtNode
|
||||
{
|
||||
float pos[3]; ///< Position of the node.
|
||||
float cost; ///< Cost from previous node to current node.
|
||||
float total; ///< Cost up to the node.
|
||||
unsigned int pidx : DT_NODE_PARENT_BITS; ///< Index to parent node.
|
||||
unsigned int state : DT_NODE_STATE_BITS; ///< extra state information. A polyRef can have multiple nodes with different extra info. see DT_MAX_STATES_PER_NODE
|
||||
unsigned int flags : 3; ///< Node flags. A combination of dtNodeFlags.
|
||||
dtPolyRef id; ///< Polygon ref the node corresponds to.
|
||||
};
|
||||
|
||||
static const int DT_MAX_STATES_PER_NODE = 1 << DT_NODE_STATE_BITS; // number of extra states per node. See dtNode::state
|
||||
|
||||
class dtNodePool
|
||||
{
|
||||
public:
|
||||
dtNodePool(int maxNodes, int hashSize);
|
||||
~dtNodePool();
|
||||
void clear();
|
||||
|
||||
// Get a dtNode by ref and extra state information. If there is none then - allocate
|
||||
// There can be more than one node for the same polyRef but with different extra state information
|
||||
dtNode* getNode(dtPolyRef id, unsigned char state=0);
|
||||
dtNode* findNode(dtPolyRef id, unsigned char state);
|
||||
unsigned int findNodes(dtPolyRef id, dtNode** nodes, const int maxNodes);
|
||||
|
||||
inline unsigned int getNodeIdx(const dtNode* node) const
|
||||
{
|
||||
if (!node) return 0;
|
||||
return (unsigned int)(node - m_nodes) + 1;
|
||||
}
|
||||
|
||||
inline dtNode* getNodeAtIdx(unsigned int idx)
|
||||
{
|
||||
if (!idx) return 0;
|
||||
return &m_nodes[idx - 1];
|
||||
}
|
||||
|
||||
inline const dtNode* getNodeAtIdx(unsigned int idx) const
|
||||
{
|
||||
if (!idx) return 0;
|
||||
return &m_nodes[idx - 1];
|
||||
}
|
||||
|
||||
inline int getMemUsed() const
|
||||
{
|
||||
return sizeof(*this) +
|
||||
sizeof(dtNode)*m_maxNodes +
|
||||
sizeof(dtNodeIndex)*m_maxNodes +
|
||||
sizeof(dtNodeIndex)*m_hashSize;
|
||||
}
|
||||
|
||||
inline int getMaxNodes() const { return m_maxNodes; }
|
||||
|
||||
inline int getHashSize() const { return m_hashSize; }
|
||||
inline dtNodeIndex getFirst(int bucket) const { return m_first[bucket]; }
|
||||
inline dtNodeIndex getNext(int i) const { return m_next[i]; }
|
||||
inline int getNodeCount() const { return m_nodeCount; }
|
||||
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
dtNodePool(const dtNodePool&);
|
||||
dtNodePool& operator=(const dtNodePool&);
|
||||
|
||||
dtNode* m_nodes;
|
||||
dtNodeIndex* m_first;
|
||||
dtNodeIndex* m_next;
|
||||
const int m_maxNodes;
|
||||
const int m_hashSize;
|
||||
int m_nodeCount;
|
||||
};
|
||||
|
||||
class dtNodeQueue
|
||||
{
|
||||
public:
|
||||
dtNodeQueue(int n);
|
||||
~dtNodeQueue();
|
||||
|
||||
inline void clear() { m_size = 0; }
|
||||
|
||||
inline dtNode* top() { return m_heap[0]; }
|
||||
|
||||
inline dtNode* pop()
|
||||
{
|
||||
dtNode* result = m_heap[0];
|
||||
m_size--;
|
||||
trickleDown(0, m_heap[m_size]);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline void push(dtNode* node)
|
||||
{
|
||||
m_size++;
|
||||
bubbleUp(m_size-1, node);
|
||||
}
|
||||
|
||||
inline void modify(dtNode* node)
|
||||
{
|
||||
for (int i = 0; i < m_size; ++i)
|
||||
{
|
||||
if (m_heap[i] == node)
|
||||
{
|
||||
bubbleUp(i, node);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline bool empty() const { return m_size == 0; }
|
||||
|
||||
inline int getMemUsed() const
|
||||
{
|
||||
return sizeof(*this) +
|
||||
sizeof(dtNode*) * (m_capacity + 1);
|
||||
}
|
||||
|
||||
inline int getCapacity() const { return m_capacity; }
|
||||
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
dtNodeQueue(const dtNodeQueue&);
|
||||
dtNodeQueue& operator=(const dtNodeQueue&);
|
||||
|
||||
void bubbleUp(int i, dtNode* node);
|
||||
void trickleDown(int i, dtNode* node);
|
||||
|
||||
dtNode** m_heap;
|
||||
const int m_capacity;
|
||||
int m_size;
|
||||
};
|
||||
|
||||
|
||||
#endif // DETOURNODE_H
|
||||
64
libs/recast/detour/include/DetourStatus.h
Normal file
64
libs/recast/detour/include/DetourStatus.h
Normal file
@ -0,0 +1,64 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURSTATUS_H
|
||||
#define DETOURSTATUS_H
|
||||
|
||||
typedef unsigned int dtStatus;
|
||||
|
||||
// High level status.
|
||||
static const unsigned int DT_FAILURE = 1u << 31; // Operation failed.
|
||||
static const unsigned int DT_SUCCESS = 1u << 30; // Operation succeed.
|
||||
static const unsigned int DT_IN_PROGRESS = 1u << 29; // Operation still in progress.
|
||||
|
||||
// Detail information for status.
|
||||
static const unsigned int DT_STATUS_DETAIL_MASK = 0x0ffffff;
|
||||
static const unsigned int DT_WRONG_MAGIC = 1 << 0; // Input data is not recognized.
|
||||
static const unsigned int DT_WRONG_VERSION = 1 << 1; // Input data is in wrong version.
|
||||
static const unsigned int DT_OUT_OF_MEMORY = 1 << 2; // Operation ran out of memory.
|
||||
static const unsigned int DT_INVALID_PARAM = 1 << 3; // An input parameter was invalid.
|
||||
static const unsigned int DT_BUFFER_TOO_SMALL = 1 << 4; // Result buffer for the query was too small to store all results.
|
||||
static const unsigned int DT_OUT_OF_NODES = 1 << 5; // Query ran out of nodes during search.
|
||||
static const unsigned int DT_PARTIAL_RESULT = 1 << 6; // Query did not reach the end location, returning best guess.
|
||||
|
||||
|
||||
// Returns true of status is success.
|
||||
inline bool dtStatusSucceed(dtStatus status)
|
||||
{
|
||||
return (status & DT_SUCCESS) != 0;
|
||||
}
|
||||
|
||||
// Returns true of status is failure.
|
||||
inline bool dtStatusFailed(dtStatus status)
|
||||
{
|
||||
return (status & DT_FAILURE) != 0;
|
||||
}
|
||||
|
||||
// Returns true of status is in progress.
|
||||
inline bool dtStatusInProgress(dtStatus status)
|
||||
{
|
||||
return (status & DT_IN_PROGRESS) != 0;
|
||||
}
|
||||
|
||||
// Returns true if specific detail is set.
|
||||
inline bool dtStatusDetail(dtStatus status, unsigned int detail)
|
||||
{
|
||||
return (status & detail) != 0;
|
||||
}
|
||||
|
||||
#endif // DETOURSTATUS_H
|
||||
50
libs/recast/detour/src/DetourAlloc.cpp
Normal file
50
libs/recast/detour/src/DetourAlloc.cpp
Normal file
@ -0,0 +1,50 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <stdlib.h>
|
||||
#include "DetourAlloc.h"
|
||||
|
||||
static void *dtAllocDefault(size_t size, dtAllocHint)
|
||||
{
|
||||
return malloc(size);
|
||||
}
|
||||
|
||||
static void dtFreeDefault(void *ptr)
|
||||
{
|
||||
free(ptr);
|
||||
}
|
||||
|
||||
static dtAllocFunc* sAllocFunc = dtAllocDefault;
|
||||
static dtFreeFunc* sFreeFunc = dtFreeDefault;
|
||||
|
||||
void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc)
|
||||
{
|
||||
sAllocFunc = allocFunc ? allocFunc : dtAllocDefault;
|
||||
sFreeFunc = freeFunc ? freeFunc : dtFreeDefault;
|
||||
}
|
||||
|
||||
void* dtAlloc(size_t size, dtAllocHint hint)
|
||||
{
|
||||
return sAllocFunc(size, hint);
|
||||
}
|
||||
|
||||
void dtFree(void* ptr)
|
||||
{
|
||||
if (ptr)
|
||||
sFreeFunc(ptr);
|
||||
}
|
||||
35
libs/recast/detour/src/DetourAssert.cpp
Normal file
35
libs/recast/detour/src/DetourAssert.cpp
Normal file
@ -0,0 +1,35 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include "DetourAssert.h"
|
||||
|
||||
#ifndef NDEBUG
|
||||
|
||||
static dtAssertFailFunc* sAssertFailFunc = 0;
|
||||
|
||||
void dtAssertFailSetCustom(dtAssertFailFunc *assertFailFunc)
|
||||
{
|
||||
sAssertFailFunc = assertFailFunc;
|
||||
}
|
||||
|
||||
dtAssertFailFunc* dtAssertFailGetCustom()
|
||||
{
|
||||
return sAssertFailFunc;
|
||||
}
|
||||
|
||||
#endif
|
||||
388
libs/recast/detour/src/DetourCommon.cpp
Normal file
388
libs/recast/detour/src/DetourCommon.cpp
Normal file
@ -0,0 +1,388 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include "DetourCommon.h"
|
||||
#include "DetourMath.h"
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void dtClosestPtPointTriangle(float* closest, const float* p,
|
||||
const float* a, const float* b, const float* c)
|
||||
{
|
||||
// Check if P in vertex region outside A
|
||||
float ab[3], ac[3], ap[3];
|
||||
dtVsub(ab, b, a);
|
||||
dtVsub(ac, c, a);
|
||||
dtVsub(ap, p, a);
|
||||
float d1 = dtVdot(ab, ap);
|
||||
float d2 = dtVdot(ac, ap);
|
||||
if (d1 <= 0.0f && d2 <= 0.0f)
|
||||
{
|
||||
// barycentric coordinates (1,0,0)
|
||||
dtVcopy(closest, a);
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside B
|
||||
float bp[3];
|
||||
dtVsub(bp, p, b);
|
||||
float d3 = dtVdot(ab, bp);
|
||||
float d4 = dtVdot(ac, bp);
|
||||
if (d3 >= 0.0f && d4 <= d3)
|
||||
{
|
||||
// barycentric coordinates (0,1,0)
|
||||
dtVcopy(closest, b);
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if P in edge region of AB, if so return projection of P onto AB
|
||||
float vc = d1*d4 - d3*d2;
|
||||
if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f)
|
||||
{
|
||||
// barycentric coordinates (1-v,v,0)
|
||||
float v = d1 / (d1 - d3);
|
||||
closest[0] = a[0] + v * ab[0];
|
||||
closest[1] = a[1] + v * ab[1];
|
||||
closest[2] = a[2] + v * ab[2];
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if P in vertex region outside C
|
||||
float cp[3];
|
||||
dtVsub(cp, p, c);
|
||||
float d5 = dtVdot(ab, cp);
|
||||
float d6 = dtVdot(ac, cp);
|
||||
if (d6 >= 0.0f && d5 <= d6)
|
||||
{
|
||||
// barycentric coordinates (0,0,1)
|
||||
dtVcopy(closest, c);
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if P in edge region of AC, if so return projection of P onto AC
|
||||
float vb = d5*d2 - d1*d6;
|
||||
if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f)
|
||||
{
|
||||
// barycentric coordinates (1-w,0,w)
|
||||
float w = d2 / (d2 - d6);
|
||||
closest[0] = a[0] + w * ac[0];
|
||||
closest[1] = a[1] + w * ac[1];
|
||||
closest[2] = a[2] + w * ac[2];
|
||||
return;
|
||||
}
|
||||
|
||||
// Check if P in edge region of BC, if so return projection of P onto BC
|
||||
float va = d3*d6 - d5*d4;
|
||||
if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f)
|
||||
{
|
||||
// barycentric coordinates (0,1-w,w)
|
||||
float w = (d4 - d3) / ((d4 - d3) + (d5 - d6));
|
||||
closest[0] = b[0] + w * (c[0] - b[0]);
|
||||
closest[1] = b[1] + w * (c[1] - b[1]);
|
||||
closest[2] = b[2] + w * (c[2] - b[2]);
|
||||
return;
|
||||
}
|
||||
|
||||
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
|
||||
float denom = 1.0f / (va + vb + vc);
|
||||
float v = vb * denom;
|
||||
float w = vc * denom;
|
||||
closest[0] = a[0] + ab[0] * v + ac[0] * w;
|
||||
closest[1] = a[1] + ab[1] * v + ac[1] * w;
|
||||
closest[2] = a[2] + ab[2] * v + ac[2] * w;
|
||||
}
|
||||
|
||||
bool dtIntersectSegmentPoly2D(const float* p0, const float* p1,
|
||||
const float* verts, int nverts,
|
||||
float& tmin, float& tmax,
|
||||
int& segMin, int& segMax)
|
||||
{
|
||||
static const float EPS = 0.00000001f;
|
||||
|
||||
tmin = 0;
|
||||
tmax = 1;
|
||||
segMin = -1;
|
||||
segMax = -1;
|
||||
|
||||
float dir[3];
|
||||
dtVsub(dir, p1, p0);
|
||||
|
||||
for (int i = 0, j = nverts-1; i < nverts; j=i++)
|
||||
{
|
||||
float edge[3], diff[3];
|
||||
dtVsub(edge, &verts[i*3], &verts[j*3]);
|
||||
dtVsub(diff, p0, &verts[j*3]);
|
||||
const float n = dtVperp2D(edge, diff);
|
||||
const float d = dtVperp2D(dir, edge);
|
||||
if (fabsf(d) < EPS)
|
||||
{
|
||||
// S is nearly parallel to this edge
|
||||
if (n < 0)
|
||||
return false;
|
||||
else
|
||||
continue;
|
||||
}
|
||||
const float t = n / d;
|
||||
if (d < 0)
|
||||
{
|
||||
// segment S is entering across this edge
|
||||
if (t > tmin)
|
||||
{
|
||||
tmin = t;
|
||||
segMin = j;
|
||||
// S enters after leaving polygon
|
||||
if (tmin > tmax)
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// segment S is leaving across this edge
|
||||
if (t < tmax)
|
||||
{
|
||||
tmax = t;
|
||||
segMax = j;
|
||||
// S leaves before entering polygon
|
||||
if (tmax < tmin)
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t)
|
||||
{
|
||||
float pqx = q[0] - p[0];
|
||||
float pqz = q[2] - p[2];
|
||||
float dx = pt[0] - p[0];
|
||||
float dz = pt[2] - p[2];
|
||||
float d = pqx*pqx + pqz*pqz;
|
||||
t = pqx*dx + pqz*dz;
|
||||
if (d > 0) t /= d;
|
||||
if (t < 0) t = 0;
|
||||
else if (t > 1) t = 1;
|
||||
dx = p[0] + t*pqx - pt[0];
|
||||
dz = p[2] + t*pqz - pt[2];
|
||||
return dx*dx + dz*dz;
|
||||
}
|
||||
|
||||
void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts)
|
||||
{
|
||||
tc[0] = 0.0f;
|
||||
tc[1] = 0.0f;
|
||||
tc[2] = 0.0f;
|
||||
for (int j = 0; j < nidx; ++j)
|
||||
{
|
||||
const float* v = &verts[idx[j]*3];
|
||||
tc[0] += v[0];
|
||||
tc[1] += v[1];
|
||||
tc[2] += v[2];
|
||||
}
|
||||
const float s = 1.0f / nidx;
|
||||
tc[0] *= s;
|
||||
tc[1] *= s;
|
||||
tc[2] *= s;
|
||||
}
|
||||
|
||||
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
|
||||
{
|
||||
float v0[3], v1[3], v2[3];
|
||||
dtVsub(v0, c,a);
|
||||
dtVsub(v1, b,a);
|
||||
dtVsub(v2, p,a);
|
||||
|
||||
const float dot00 = dtVdot2D(v0, v0);
|
||||
const float dot01 = dtVdot2D(v0, v1);
|
||||
const float dot02 = dtVdot2D(v0, v2);
|
||||
const float dot11 = dtVdot2D(v1, v1);
|
||||
const float dot12 = dtVdot2D(v1, v2);
|
||||
|
||||
// Compute barycentric coordinates
|
||||
const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
|
||||
const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
|
||||
const float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
|
||||
|
||||
// The (sloppy) epsilon is needed to allow to get height of points which
|
||||
// are interpolated along the edges of the triangles.
|
||||
static const float EPS = 1e-4f;
|
||||
|
||||
// If point lies inside the triangle, return interpolated ycoord.
|
||||
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
|
||||
{
|
||||
h = a[1] + v0[1]*u + v1[1]*v;
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// All points are projected onto the xz-plane, so the y-values are ignored.
|
||||
bool dtPointInPolygon(const float* pt, const float* verts, const int nverts)
|
||||
{
|
||||
// TODO: Replace pnpoly with triArea2D tests?
|
||||
int i, j;
|
||||
bool c = false;
|
||||
for (i = 0, j = nverts-1; i < nverts; j = i++)
|
||||
{
|
||||
const float* vi = &verts[i*3];
|
||||
const float* vj = &verts[j*3];
|
||||
if (((vi[2] > pt[2]) != (vj[2] > pt[2])) &&
|
||||
(pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
|
||||
c = !c;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts,
|
||||
float* ed, float* et)
|
||||
{
|
||||
// TODO: Replace pnpoly with triArea2D tests?
|
||||
int i, j;
|
||||
bool c = false;
|
||||
for (i = 0, j = nverts-1; i < nverts; j = i++)
|
||||
{
|
||||
const float* vi = &verts[i*3];
|
||||
const float* vj = &verts[j*3];
|
||||
if (((vi[2] > pt[2]) != (vj[2] > pt[2])) &&
|
||||
(pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
|
||||
c = !c;
|
||||
ed[j] = dtDistancePtSegSqr2D(pt, vj, vi, et[j]);
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
static void projectPoly(const float* axis, const float* poly, const int npoly,
|
||||
float& rmin, float& rmax)
|
||||
{
|
||||
rmin = rmax = dtVdot2D(axis, &poly[0]);
|
||||
for (int i = 1; i < npoly; ++i)
|
||||
{
|
||||
const float d = dtVdot2D(axis, &poly[i*3]);
|
||||
rmin = dtMin(rmin, d);
|
||||
rmax = dtMax(rmax, d);
|
||||
}
|
||||
}
|
||||
|
||||
inline bool overlapRange(const float amin, const float amax,
|
||||
const float bmin, const float bmax,
|
||||
const float eps)
|
||||
{
|
||||
return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// All vertices are projected onto the xz-plane, so the y-values are ignored.
|
||||
bool dtOverlapPolyPoly2D(const float* polya, const int npolya,
|
||||
const float* polyb, const int npolyb)
|
||||
{
|
||||
const float eps = 1e-4f;
|
||||
|
||||
for (int i = 0, j = npolya-1; i < npolya; j=i++)
|
||||
{
|
||||
const float* va = &polya[j*3];
|
||||
const float* vb = &polya[i*3];
|
||||
const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) };
|
||||
float amin,amax,bmin,bmax;
|
||||
projectPoly(n, polya, npolya, amin,amax);
|
||||
projectPoly(n, polyb, npolyb, bmin,bmax);
|
||||
if (!overlapRange(amin,amax, bmin,bmax, eps))
|
||||
{
|
||||
// Found separating axis
|
||||
return false;
|
||||
}
|
||||
}
|
||||
for (int i = 0, j = npolyb-1; i < npolyb; j=i++)
|
||||
{
|
||||
const float* va = &polyb[j*3];
|
||||
const float* vb = &polyb[i*3];
|
||||
const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) };
|
||||
float amin,amax,bmin,bmax;
|
||||
projectPoly(n, polya, npolya, amin,amax);
|
||||
projectPoly(n, polyb, npolyb, bmin,bmax);
|
||||
if (!overlapRange(amin,amax, bmin,bmax, eps))
|
||||
{
|
||||
// Found separating axis
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Returns a random point in a convex polygon.
|
||||
// Adapted from Graphics Gems article.
|
||||
void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas,
|
||||
const float s, const float t, float* out)
|
||||
{
|
||||
// Calc triangle araes
|
||||
float areasum = 0.0f;
|
||||
for (int i = 2; i < npts; i++) {
|
||||
areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]);
|
||||
areasum += dtMax(0.001f, areas[i]);
|
||||
}
|
||||
// Find sub triangle weighted by area.
|
||||
const float thr = s*areasum;
|
||||
float acc = 0.0f;
|
||||
float u = 1.0f;
|
||||
int tri = npts - 1;
|
||||
for (int i = 2; i < npts; i++) {
|
||||
const float dacc = areas[i];
|
||||
if (thr >= acc && thr < (acc+dacc))
|
||||
{
|
||||
u = (thr - acc) / dacc;
|
||||
tri = i;
|
||||
break;
|
||||
}
|
||||
acc += dacc;
|
||||
}
|
||||
|
||||
float v = dtMathSqrtf(t);
|
||||
|
||||
const float a = 1 - v;
|
||||
const float b = (1 - u) * v;
|
||||
const float c = u * v;
|
||||
const float* pa = &pts[0];
|
||||
const float* pb = &pts[(tri-1)*3];
|
||||
const float* pc = &pts[tri*3];
|
||||
|
||||
out[0] = a*pa[0] + b*pb[0] + c*pc[0];
|
||||
out[1] = a*pa[1] + b*pb[1] + c*pc[1];
|
||||
out[2] = a*pa[2] + b*pb[2] + c*pc[2];
|
||||
}
|
||||
|
||||
inline float vperpXZ(const float* a, const float* b) { return a[0]*b[2] - a[2]*b[0]; }
|
||||
|
||||
bool dtIntersectSegSeg2D(const float* ap, const float* aq,
|
||||
const float* bp, const float* bq,
|
||||
float& s, float& t)
|
||||
{
|
||||
float u[3], v[3], w[3];
|
||||
dtVsub(u,aq,ap);
|
||||
dtVsub(v,bq,bp);
|
||||
dtVsub(w,ap,bp);
|
||||
float d = vperpXZ(u,v);
|
||||
if (fabsf(d) < 1e-6f) return false;
|
||||
s = vperpXZ(v,w) / d;
|
||||
t = vperpXZ(u,w) / d;
|
||||
return true;
|
||||
}
|
||||
|
||||
1522
libs/recast/detour/src/DetourNavMesh.cpp
Normal file
1522
libs/recast/detour/src/DetourNavMesh.cpp
Normal file
File diff suppressed because it is too large
Load Diff
802
libs/recast/detour/src/DetourNavMeshBuilder.cpp
Normal file
802
libs/recast/detour/src/DetourNavMeshBuilder.cpp
Normal file
@ -0,0 +1,802 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <float.h>
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourCommon.h"
|
||||
#include "DetourMath.h"
|
||||
#include "DetourNavMeshBuilder.h"
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourAssert.h"
|
||||
|
||||
static unsigned short MESH_NULL_IDX = 0xffff;
|
||||
|
||||
|
||||
struct BVItem
|
||||
{
|
||||
unsigned short bmin[3];
|
||||
unsigned short bmax[3];
|
||||
int i;
|
||||
};
|
||||
|
||||
static int compareItemX(const void* va, const void* vb)
|
||||
{
|
||||
const BVItem* a = (const BVItem*)va;
|
||||
const BVItem* b = (const BVItem*)vb;
|
||||
if (a->bmin[0] < b->bmin[0])
|
||||
return -1;
|
||||
if (a->bmin[0] > b->bmin[0])
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int compareItemY(const void* va, const void* vb)
|
||||
{
|
||||
const BVItem* a = (const BVItem*)va;
|
||||
const BVItem* b = (const BVItem*)vb;
|
||||
if (a->bmin[1] < b->bmin[1])
|
||||
return -1;
|
||||
if (a->bmin[1] > b->bmin[1])
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int compareItemZ(const void* va, const void* vb)
|
||||
{
|
||||
const BVItem* a = (const BVItem*)va;
|
||||
const BVItem* b = (const BVItem*)vb;
|
||||
if (a->bmin[2] < b->bmin[2])
|
||||
return -1;
|
||||
if (a->bmin[2] > b->bmin[2])
|
||||
return 1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void calcExtends(BVItem* items, const int /*nitems*/, const int imin, const int imax,
|
||||
unsigned short* bmin, unsigned short* bmax)
|
||||
{
|
||||
bmin[0] = items[imin].bmin[0];
|
||||
bmin[1] = items[imin].bmin[1];
|
||||
bmin[2] = items[imin].bmin[2];
|
||||
|
||||
bmax[0] = items[imin].bmax[0];
|
||||
bmax[1] = items[imin].bmax[1];
|
||||
bmax[2] = items[imin].bmax[2];
|
||||
|
||||
for (int i = imin+1; i < imax; ++i)
|
||||
{
|
||||
const BVItem& it = items[i];
|
||||
if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
|
||||
if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
|
||||
if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2];
|
||||
|
||||
if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
|
||||
if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
|
||||
if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2];
|
||||
}
|
||||
}
|
||||
|
||||
inline int longestAxis(unsigned short x, unsigned short y, unsigned short z)
|
||||
{
|
||||
int axis = 0;
|
||||
unsigned short maxVal = x;
|
||||
if (y > maxVal)
|
||||
{
|
||||
axis = 1;
|
||||
maxVal = y;
|
||||
}
|
||||
if (z > maxVal)
|
||||
{
|
||||
axis = 2;
|
||||
}
|
||||
return axis;
|
||||
}
|
||||
|
||||
static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes)
|
||||
{
|
||||
int inum = imax - imin;
|
||||
int icur = curNode;
|
||||
|
||||
dtBVNode& node = nodes[curNode++];
|
||||
|
||||
if (inum == 1)
|
||||
{
|
||||
// Leaf
|
||||
node.bmin[0] = items[imin].bmin[0];
|
||||
node.bmin[1] = items[imin].bmin[1];
|
||||
node.bmin[2] = items[imin].bmin[2];
|
||||
|
||||
node.bmax[0] = items[imin].bmax[0];
|
||||
node.bmax[1] = items[imin].bmax[1];
|
||||
node.bmax[2] = items[imin].bmax[2];
|
||||
|
||||
node.i = items[imin].i;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Split
|
||||
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
|
||||
|
||||
int axis = longestAxis(node.bmax[0] - node.bmin[0],
|
||||
node.bmax[1] - node.bmin[1],
|
||||
node.bmax[2] - node.bmin[2]);
|
||||
|
||||
if (axis == 0)
|
||||
{
|
||||
// Sort along x-axis
|
||||
qsort(items+imin, inum, sizeof(BVItem), compareItemX);
|
||||
}
|
||||
else if (axis == 1)
|
||||
{
|
||||
// Sort along y-axis
|
||||
qsort(items+imin, inum, sizeof(BVItem), compareItemY);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Sort along z-axis
|
||||
qsort(items+imin, inum, sizeof(BVItem), compareItemZ);
|
||||
}
|
||||
|
||||
int isplit = imin+inum/2;
|
||||
|
||||
// Left
|
||||
subdivide(items, nitems, imin, isplit, curNode, nodes);
|
||||
// Right
|
||||
subdivide(items, nitems, isplit, imax, curNode, nodes);
|
||||
|
||||
int iescape = curNode - icur;
|
||||
// Negative index means escape.
|
||||
node.i = -iescape;
|
||||
}
|
||||
}
|
||||
|
||||
static int createBVTree(dtNavMeshCreateParams* params, dtBVNode* nodes, int /*nnodes*/)
|
||||
{
|
||||
// Build tree
|
||||
float quantFactor = 1 / params->cs;
|
||||
BVItem* items = (BVItem*)dtAlloc(sizeof(BVItem)*params->polyCount, DT_ALLOC_TEMP);
|
||||
for (int i = 0; i < params->polyCount; i++)
|
||||
{
|
||||
BVItem& it = items[i];
|
||||
it.i = i;
|
||||
// Calc polygon bounds. Use detail meshes if available.
|
||||
if (params->detailMeshes)
|
||||
{
|
||||
int vb = (int)params->detailMeshes[i*4+0];
|
||||
int ndv = (int)params->detailMeshes[i*4+1];
|
||||
float bmin[3];
|
||||
float bmax[3];
|
||||
|
||||
const float* dv = ¶ms->detailVerts[vb*3];
|
||||
dtVcopy(bmin, dv);
|
||||
dtVcopy(bmax, dv);
|
||||
|
||||
for (int j = 1; j < ndv; j++)
|
||||
{
|
||||
dtVmin(bmin, &dv[j * 3]);
|
||||
dtVmax(bmax, &dv[j * 3]);
|
||||
}
|
||||
|
||||
// BV-tree uses cs for all dimensions
|
||||
it.bmin[0] = (unsigned short)dtClamp((int)((bmin[0] - params->bmin[0])*quantFactor), 0, 0xffff);
|
||||
it.bmin[1] = (unsigned short)dtClamp((int)((bmin[1] - params->bmin[1])*quantFactor), 0, 0xffff);
|
||||
it.bmin[2] = (unsigned short)dtClamp((int)((bmin[2] - params->bmin[2])*quantFactor), 0, 0xffff);
|
||||
|
||||
it.bmax[0] = (unsigned short)dtClamp((int)((bmax[0] - params->bmin[0])*quantFactor), 0, 0xffff);
|
||||
it.bmax[1] = (unsigned short)dtClamp((int)((bmax[1] - params->bmin[1])*quantFactor), 0, 0xffff);
|
||||
it.bmax[2] = (unsigned short)dtClamp((int)((bmax[2] - params->bmin[2])*quantFactor), 0, 0xffff);
|
||||
}
|
||||
else
|
||||
{
|
||||
const unsigned short* p = ¶ms->polys[i*params->nvp * 2];
|
||||
it.bmin[0] = it.bmax[0] = params->verts[p[0] * 3 + 0];
|
||||
it.bmin[1] = it.bmax[1] = params->verts[p[0] * 3 + 1];
|
||||
it.bmin[2] = it.bmax[2] = params->verts[p[0] * 3 + 2];
|
||||
|
||||
for (int j = 1; j < params->nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
unsigned short x = params->verts[p[j] * 3 + 0];
|
||||
unsigned short y = params->verts[p[j] * 3 + 1];
|
||||
unsigned short z = params->verts[p[j] * 3 + 2];
|
||||
|
||||
if (x < it.bmin[0]) it.bmin[0] = x;
|
||||
if (y < it.bmin[1]) it.bmin[1] = y;
|
||||
if (z < it.bmin[2]) it.bmin[2] = z;
|
||||
|
||||
if (x > it.bmax[0]) it.bmax[0] = x;
|
||||
if (y > it.bmax[1]) it.bmax[1] = y;
|
||||
if (z > it.bmax[2]) it.bmax[2] = z;
|
||||
}
|
||||
// Remap y
|
||||
it.bmin[1] = (unsigned short)dtMathFloorf((float)it.bmin[1] * params->ch / params->cs);
|
||||
it.bmax[1] = (unsigned short)dtMathCeilf((float)it.bmax[1] * params->ch / params->cs);
|
||||
}
|
||||
}
|
||||
|
||||
int curNode = 0;
|
||||
subdivide(items, params->polyCount, 0, params->polyCount, curNode, nodes);
|
||||
|
||||
dtFree(items);
|
||||
|
||||
return curNode;
|
||||
}
|
||||
|
||||
static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax)
|
||||
{
|
||||
static const unsigned char XP = 1<<0;
|
||||
static const unsigned char ZP = 1<<1;
|
||||
static const unsigned char XM = 1<<2;
|
||||
static const unsigned char ZM = 1<<3;
|
||||
|
||||
unsigned char outcode = 0;
|
||||
outcode |= (pt[0] >= bmax[0]) ? XP : 0;
|
||||
outcode |= (pt[2] >= bmax[2]) ? ZP : 0;
|
||||
outcode |= (pt[0] < bmin[0]) ? XM : 0;
|
||||
outcode |= (pt[2] < bmin[2]) ? ZM : 0;
|
||||
|
||||
switch (outcode)
|
||||
{
|
||||
case XP: return 0;
|
||||
case XP|ZP: return 1;
|
||||
case ZP: return 2;
|
||||
case XM|ZP: return 3;
|
||||
case XM: return 4;
|
||||
case XM|ZM: return 5;
|
||||
case ZM: return 6;
|
||||
case XP|ZM: return 7;
|
||||
};
|
||||
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
// TODO: Better error handling.
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The output data array is allocated using the detour allocator (dtAlloc()). The method
|
||||
/// used to free the memory will be determined by how the tile is added to the navigation
|
||||
/// mesh.
|
||||
///
|
||||
/// @see dtNavMesh, dtNavMesh::addTile()
|
||||
bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize)
|
||||
{
|
||||
if (params->nvp > DT_VERTS_PER_POLYGON)
|
||||
return false;
|
||||
if (params->vertCount >= 0xffff)
|
||||
return false;
|
||||
if (!params->vertCount || !params->verts)
|
||||
return false;
|
||||
if (!params->polyCount || !params->polys)
|
||||
return false;
|
||||
|
||||
const int nvp = params->nvp;
|
||||
|
||||
// Classify off-mesh connection points. We store only the connections
|
||||
// whose start point is inside the tile.
|
||||
unsigned char* offMeshConClass = 0;
|
||||
int storedOffMeshConCount = 0;
|
||||
int offMeshConLinkCount = 0;
|
||||
|
||||
if (params->offMeshConCount > 0)
|
||||
{
|
||||
offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP);
|
||||
if (!offMeshConClass)
|
||||
return false;
|
||||
|
||||
// Find tight heigh bounds, used for culling out off-mesh start locations.
|
||||
float hmin = FLT_MAX;
|
||||
float hmax = -FLT_MAX;
|
||||
|
||||
if (params->detailVerts && params->detailVertsCount)
|
||||
{
|
||||
for (int i = 0; i < params->detailVertsCount; ++i)
|
||||
{
|
||||
const float h = params->detailVerts[i*3+1];
|
||||
hmin = dtMin(hmin,h);
|
||||
hmax = dtMax(hmax,h);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < params->vertCount; ++i)
|
||||
{
|
||||
const unsigned short* iv = ¶ms->verts[i*3];
|
||||
const float h = params->bmin[1] + iv[1] * params->ch;
|
||||
hmin = dtMin(hmin,h);
|
||||
hmax = dtMax(hmax,h);
|
||||
}
|
||||
}
|
||||
hmin -= params->walkableClimb;
|
||||
hmax += params->walkableClimb;
|
||||
float bmin[3], bmax[3];
|
||||
dtVcopy(bmin, params->bmin);
|
||||
dtVcopy(bmax, params->bmax);
|
||||
bmin[1] = hmin;
|
||||
bmax[1] = hmax;
|
||||
|
||||
for (int i = 0; i < params->offMeshConCount; ++i)
|
||||
{
|
||||
const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3];
|
||||
const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3];
|
||||
offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax);
|
||||
offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax);
|
||||
|
||||
// Zero out off-mesh start positions which are not even potentially touching the mesh.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
{
|
||||
if (p0[1] < bmin[1] || p0[1] > bmax[1])
|
||||
offMeshConClass[i*2+0] = 0;
|
||||
}
|
||||
|
||||
// Cound how many links should be allocated for off-mesh connections.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
offMeshConLinkCount++;
|
||||
if (offMeshConClass[i*2+1] == 0xff)
|
||||
offMeshConLinkCount++;
|
||||
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
storedOffMeshConCount++;
|
||||
}
|
||||
}
|
||||
|
||||
// Off-mesh connectionss are stored as polygons, adjust values.
|
||||
const int totPolyCount = params->polyCount + storedOffMeshConCount;
|
||||
const int totVertCount = params->vertCount + storedOffMeshConCount*2;
|
||||
|
||||
// Find portal edges which are at tile borders.
|
||||
int edgeCount = 0;
|
||||
int portalCount = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
const unsigned short* p = ¶ms->polys[i*2*nvp];
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
edgeCount++;
|
||||
|
||||
if (p[nvp+j] & 0x8000)
|
||||
{
|
||||
unsigned short dir = p[nvp+j] & 0xf;
|
||||
if (dir != 0xf)
|
||||
portalCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2;
|
||||
|
||||
// Find unique detail vertices.
|
||||
int uniqueDetailVertCount = 0;
|
||||
int detailTriCount = 0;
|
||||
if (params->detailMeshes)
|
||||
{
|
||||
// Has detail mesh, count unique detail vertex count and use input detail tri count.
|
||||
detailTriCount = params->detailTriCount;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
const unsigned short* p = ¶ms->polys[i*nvp*2];
|
||||
int ndv = params->detailMeshes[i*4+1];
|
||||
int nv = 0;
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
nv++;
|
||||
}
|
||||
ndv -= nv;
|
||||
uniqueDetailVertCount += ndv;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// No input detail mesh, build detail mesh from nav polys.
|
||||
uniqueDetailVertCount = 0; // No extra detail verts.
|
||||
detailTriCount = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
const unsigned short* p = ¶ms->polys[i*nvp*2];
|
||||
int nv = 0;
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (p[j] == MESH_NULL_IDX) break;
|
||||
nv++;
|
||||
}
|
||||
detailTriCount += nv-2;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate data size
|
||||
const int headerSize = dtAlign4(sizeof(dtMeshHeader));
|
||||
const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount);
|
||||
const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount);
|
||||
const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount);
|
||||
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount);
|
||||
const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount);
|
||||
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount);
|
||||
const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0;
|
||||
const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount);
|
||||
|
||||
const int dataSize = headerSize + vertsSize + polysSize + linksSize +
|
||||
detailMeshesSize + detailVertsSize + detailTrisSize +
|
||||
bvTreeSize + offMeshConsSize;
|
||||
|
||||
unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM);
|
||||
if (!data)
|
||||
{
|
||||
dtFree(offMeshConClass);
|
||||
return false;
|
||||
}
|
||||
memset(data, 0, dataSize);
|
||||
|
||||
unsigned char* d = data;
|
||||
|
||||
dtMeshHeader* header = dtGetThenAdvanceBufferPointer<dtMeshHeader>(d, headerSize);
|
||||
float* navVerts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
|
||||
dtPoly* navPolys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
|
||||
d += linksSize; // Ignore links; just leave enough space for them. They'll be created on load.
|
||||
dtPolyDetail* navDMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
|
||||
float* navDVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
|
||||
unsigned char* navDTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
|
||||
dtBVNode* navBvtree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvTreeSize);
|
||||
dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshConsSize);
|
||||
|
||||
|
||||
// Store header
|
||||
header->magic = DT_NAVMESH_MAGIC;
|
||||
header->version = DT_NAVMESH_VERSION;
|
||||
header->x = params->tileX;
|
||||
header->y = params->tileY;
|
||||
header->layer = params->tileLayer;
|
||||
header->userId = params->userId;
|
||||
header->polyCount = totPolyCount;
|
||||
header->vertCount = totVertCount;
|
||||
header->maxLinkCount = maxLinkCount;
|
||||
dtVcopy(header->bmin, params->bmin);
|
||||
dtVcopy(header->bmax, params->bmax);
|
||||
header->detailMeshCount = params->polyCount;
|
||||
header->detailVertCount = uniqueDetailVertCount;
|
||||
header->detailTriCount = detailTriCount;
|
||||
header->bvQuantFactor = 1.0f / params->cs;
|
||||
header->offMeshBase = params->polyCount;
|
||||
header->walkableHeight = params->walkableHeight;
|
||||
header->walkableRadius = params->walkableRadius;
|
||||
header->walkableClimb = params->walkableClimb;
|
||||
header->offMeshConCount = storedOffMeshConCount;
|
||||
header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0;
|
||||
|
||||
const int offMeshVertsBase = params->vertCount;
|
||||
const int offMeshPolyBase = params->polyCount;
|
||||
|
||||
// Store vertices
|
||||
// Mesh vertices
|
||||
for (int i = 0; i < params->vertCount; ++i)
|
||||
{
|
||||
const unsigned short* iv = ¶ms->verts[i*3];
|
||||
float* v = &navVerts[i*3];
|
||||
v[0] = params->bmin[0] + iv[0] * params->cs;
|
||||
v[1] = params->bmin[1] + iv[1] * params->ch;
|
||||
v[2] = params->bmin[2] + iv[2] * params->cs;
|
||||
}
|
||||
// Off-mesh link vertices.
|
||||
int n = 0;
|
||||
for (int i = 0; i < params->offMeshConCount; ++i)
|
||||
{
|
||||
// Only store connections which start from this tile.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
{
|
||||
const float* linkv = ¶ms->offMeshConVerts[i*2*3];
|
||||
float* v = &navVerts[(offMeshVertsBase + n*2)*3];
|
||||
dtVcopy(&v[0], &linkv[0]);
|
||||
dtVcopy(&v[3], &linkv[3]);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
// Store polygons
|
||||
// Mesh polys
|
||||
const unsigned short* src = params->polys;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
dtPoly* p = &navPolys[i];
|
||||
p->vertCount = 0;
|
||||
p->flags = params->polyFlags[i];
|
||||
p->setArea(params->polyAreas[i]);
|
||||
p->setType(DT_POLYTYPE_GROUND);
|
||||
for (int j = 0; j < nvp; ++j)
|
||||
{
|
||||
if (src[j] == MESH_NULL_IDX) break;
|
||||
p->verts[j] = src[j];
|
||||
if (src[nvp+j] & 0x8000)
|
||||
{
|
||||
// Border or portal edge.
|
||||
unsigned short dir = src[nvp+j] & 0xf;
|
||||
if (dir == 0xf) // Border
|
||||
p->neis[j] = 0;
|
||||
else if (dir == 0) // Portal x-
|
||||
p->neis[j] = DT_EXT_LINK | 4;
|
||||
else if (dir == 1) // Portal z+
|
||||
p->neis[j] = DT_EXT_LINK | 2;
|
||||
else if (dir == 2) // Portal x+
|
||||
p->neis[j] = DT_EXT_LINK | 0;
|
||||
else if (dir == 3) // Portal z-
|
||||
p->neis[j] = DT_EXT_LINK | 6;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Normal connection
|
||||
p->neis[j] = src[nvp+j]+1;
|
||||
}
|
||||
|
||||
p->vertCount++;
|
||||
}
|
||||
src += nvp*2;
|
||||
}
|
||||
// Off-mesh connection vertices.
|
||||
n = 0;
|
||||
for (int i = 0; i < params->offMeshConCount; ++i)
|
||||
{
|
||||
// Only store connections which start from this tile.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
{
|
||||
dtPoly* p = &navPolys[offMeshPolyBase+n];
|
||||
p->vertCount = 2;
|
||||
p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0);
|
||||
p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1);
|
||||
p->flags = params->offMeshConFlags[i];
|
||||
p->setArea(params->offMeshConAreas[i]);
|
||||
p->setType(DT_POLYTYPE_OFFMESH_CONNECTION);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
// Store detail meshes and vertices.
|
||||
// The nav polygon vertices are stored as the first vertices on each mesh.
|
||||
// We compress the mesh data by skipping them and using the navmesh coordinates.
|
||||
if (params->detailMeshes)
|
||||
{
|
||||
unsigned short vbase = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
dtPolyDetail& dtl = navDMeshes[i];
|
||||
const int vb = (int)params->detailMeshes[i*4+0];
|
||||
const int ndv = (int)params->detailMeshes[i*4+1];
|
||||
const int nv = navPolys[i].vertCount;
|
||||
dtl.vertBase = (unsigned int)vbase;
|
||||
dtl.vertCount = (unsigned char)(ndv-nv);
|
||||
dtl.triBase = (unsigned int)params->detailMeshes[i*4+2];
|
||||
dtl.triCount = (unsigned char)params->detailMeshes[i*4+3];
|
||||
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
|
||||
if (ndv-nv)
|
||||
{
|
||||
memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
|
||||
vbase += (unsigned short)(ndv-nv);
|
||||
}
|
||||
}
|
||||
// Store triangles.
|
||||
memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Create dummy detail mesh by triangulating polys.
|
||||
int tbase = 0;
|
||||
for (int i = 0; i < params->polyCount; ++i)
|
||||
{
|
||||
dtPolyDetail& dtl = navDMeshes[i];
|
||||
const int nv = navPolys[i].vertCount;
|
||||
dtl.vertBase = 0;
|
||||
dtl.vertCount = 0;
|
||||
dtl.triBase = (unsigned int)tbase;
|
||||
dtl.triCount = (unsigned char)(nv-2);
|
||||
// Triangulate polygon (local indices).
|
||||
for (int j = 2; j < nv; ++j)
|
||||
{
|
||||
unsigned char* t = &navDTris[tbase*4];
|
||||
t[0] = 0;
|
||||
t[1] = (unsigned char)(j-1);
|
||||
t[2] = (unsigned char)j;
|
||||
// Bit for each edge that belongs to poly boundary.
|
||||
t[3] = (1<<2);
|
||||
if (j == 2) t[3] |= (1<<0);
|
||||
if (j == nv-1) t[3] |= (1<<4);
|
||||
tbase++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Store and create BVtree.
|
||||
if (params->buildBvTree)
|
||||
{
|
||||
createBVTree(params, navBvtree, 2*params->polyCount);
|
||||
}
|
||||
|
||||
// Store Off-Mesh connections.
|
||||
n = 0;
|
||||
for (int i = 0; i < params->offMeshConCount; ++i)
|
||||
{
|
||||
// Only store connections which start from this tile.
|
||||
if (offMeshConClass[i*2+0] == 0xff)
|
||||
{
|
||||
dtOffMeshConnection* con = &offMeshCons[n];
|
||||
con->poly = (unsigned short)(offMeshPolyBase + n);
|
||||
// Copy connection end-points.
|
||||
const float* endPts = ¶ms->offMeshConVerts[i*2*3];
|
||||
dtVcopy(&con->pos[0], &endPts[0]);
|
||||
dtVcopy(&con->pos[3], &endPts[3]);
|
||||
con->rad = params->offMeshConRad[i];
|
||||
con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0;
|
||||
con->side = offMeshConClass[i*2+1];
|
||||
if (params->offMeshConUserID)
|
||||
con->userId = params->offMeshConUserID[i];
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
dtFree(offMeshConClass);
|
||||
|
||||
*outData = data;
|
||||
*outDataSize = dataSize;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
{
|
||||
dtMeshHeader* header = (dtMeshHeader*)data;
|
||||
|
||||
int swappedMagic = DT_NAVMESH_MAGIC;
|
||||
int swappedVersion = DT_NAVMESH_VERSION;
|
||||
dtSwapEndian(&swappedMagic);
|
||||
dtSwapEndian(&swappedVersion);
|
||||
|
||||
if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) &&
|
||||
(header->magic != swappedMagic || header->version != swappedVersion))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
dtSwapEndian(&header->magic);
|
||||
dtSwapEndian(&header->version);
|
||||
dtSwapEndian(&header->x);
|
||||
dtSwapEndian(&header->y);
|
||||
dtSwapEndian(&header->layer);
|
||||
dtSwapEndian(&header->userId);
|
||||
dtSwapEndian(&header->polyCount);
|
||||
dtSwapEndian(&header->vertCount);
|
||||
dtSwapEndian(&header->maxLinkCount);
|
||||
dtSwapEndian(&header->detailMeshCount);
|
||||
dtSwapEndian(&header->detailVertCount);
|
||||
dtSwapEndian(&header->detailTriCount);
|
||||
dtSwapEndian(&header->bvNodeCount);
|
||||
dtSwapEndian(&header->offMeshConCount);
|
||||
dtSwapEndian(&header->offMeshBase);
|
||||
dtSwapEndian(&header->walkableHeight);
|
||||
dtSwapEndian(&header->walkableRadius);
|
||||
dtSwapEndian(&header->walkableClimb);
|
||||
dtSwapEndian(&header->bmin[0]);
|
||||
dtSwapEndian(&header->bmin[1]);
|
||||
dtSwapEndian(&header->bmin[2]);
|
||||
dtSwapEndian(&header->bmax[0]);
|
||||
dtSwapEndian(&header->bmax[1]);
|
||||
dtSwapEndian(&header->bmax[2]);
|
||||
dtSwapEndian(&header->bvQuantFactor);
|
||||
|
||||
// Freelist index and pointers are updated when tile is added, no need to swap.
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// @warning This function assumes that the header is in the correct endianess already.
|
||||
/// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess
|
||||
/// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from
|
||||
/// native to foreign endianess.
|
||||
bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
|
||||
{
|
||||
// Make sure the data is in right format.
|
||||
dtMeshHeader* header = (dtMeshHeader*)data;
|
||||
if (header->magic != DT_NAVMESH_MAGIC)
|
||||
return false;
|
||||
if (header->version != DT_NAVMESH_VERSION)
|
||||
return false;
|
||||
|
||||
// Patch header pointers.
|
||||
const int headerSize = dtAlign4(sizeof(dtMeshHeader));
|
||||
const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
|
||||
const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
|
||||
const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
|
||||
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
|
||||
const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
|
||||
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
|
||||
const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
|
||||
const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
|
||||
|
||||
unsigned char* d = data + headerSize;
|
||||
float* verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
|
||||
dtPoly* polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
|
||||
d += linksSize; // Ignore links; they technically should be endian-swapped but all their data is overwritten on load anyway.
|
||||
//dtLink* links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize);
|
||||
dtPolyDetail* detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
|
||||
float* detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
|
||||
d += detailTrisSize; // Ignore detail tris; single bytes can't be endian-swapped.
|
||||
//unsigned char* detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
|
||||
dtBVNode* bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize);
|
||||
dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize);
|
||||
|
||||
// Vertices
|
||||
for (int i = 0; i < header->vertCount*3; ++i)
|
||||
{
|
||||
dtSwapEndian(&verts[i]);
|
||||
}
|
||||
|
||||
// Polys
|
||||
for (int i = 0; i < header->polyCount; ++i)
|
||||
{
|
||||
dtPoly* p = &polys[i];
|
||||
// poly->firstLink is update when tile is added, no need to swap.
|
||||
for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j)
|
||||
{
|
||||
dtSwapEndian(&p->verts[j]);
|
||||
dtSwapEndian(&p->neis[j]);
|
||||
}
|
||||
dtSwapEndian(&p->flags);
|
||||
}
|
||||
|
||||
// Links are rebuild when tile is added, no need to swap.
|
||||
|
||||
// Detail meshes
|
||||
for (int i = 0; i < header->detailMeshCount; ++i)
|
||||
{
|
||||
dtPolyDetail* pd = &detailMeshes[i];
|
||||
dtSwapEndian(&pd->vertBase);
|
||||
dtSwapEndian(&pd->triBase);
|
||||
}
|
||||
|
||||
// Detail verts
|
||||
for (int i = 0; i < header->detailVertCount*3; ++i)
|
||||
{
|
||||
dtSwapEndian(&detailVerts[i]);
|
||||
}
|
||||
|
||||
// BV-tree
|
||||
for (int i = 0; i < header->bvNodeCount; ++i)
|
||||
{
|
||||
dtBVNode* node = &bvTree[i];
|
||||
for (int j = 0; j < 3; ++j)
|
||||
{
|
||||
dtSwapEndian(&node->bmin[j]);
|
||||
dtSwapEndian(&node->bmax[j]);
|
||||
}
|
||||
dtSwapEndian(&node->i);
|
||||
}
|
||||
|
||||
// Off-mesh Connections.
|
||||
for (int i = 0; i < header->offMeshConCount; ++i)
|
||||
{
|
||||
dtOffMeshConnection* con = &offMeshCons[i];
|
||||
for (int j = 0; j < 6; ++j)
|
||||
dtSwapEndian(&con->pos[j]);
|
||||
dtSwapEndian(&con->rad);
|
||||
dtSwapEndian(&con->poly);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
3664
libs/recast/detour/src/DetourNavMeshQuery.cpp
Normal file
3664
libs/recast/detour/src/DetourNavMeshQuery.cpp
Normal file
File diff suppressed because it is too large
Load Diff
200
libs/recast/detour/src/DetourNode.cpp
Normal file
200
libs/recast/detour/src/DetourNode.cpp
Normal file
@ -0,0 +1,200 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include "DetourNode.h"
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourAssert.h"
|
||||
#include "DetourCommon.h"
|
||||
#include <string.h>
|
||||
|
||||
#ifdef DT_POLYREF64
|
||||
// From Thomas Wang, https://gist.github.com/badboy/6267743
|
||||
inline unsigned int dtHashRef(dtPolyRef a)
|
||||
{
|
||||
a = (~a) + (a << 18); // a = (a << 18) - a - 1;
|
||||
a = a ^ (a >> 31);
|
||||
a = a * 21; // a = (a + (a << 2)) + (a << 4);
|
||||
a = a ^ (a >> 11);
|
||||
a = a + (a << 6);
|
||||
a = a ^ (a >> 22);
|
||||
return (unsigned int)a;
|
||||
}
|
||||
#else
|
||||
inline unsigned int dtHashRef(dtPolyRef a)
|
||||
{
|
||||
a += ~(a<<15);
|
||||
a ^= (a>>10);
|
||||
a += (a<<3);
|
||||
a ^= (a>>6);
|
||||
a += ~(a<<11);
|
||||
a ^= (a>>16);
|
||||
return (unsigned int)a;
|
||||
}
|
||||
#endif
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
dtNodePool::dtNodePool(int maxNodes, int hashSize) :
|
||||
m_nodes(0),
|
||||
m_first(0),
|
||||
m_next(0),
|
||||
m_maxNodes(maxNodes),
|
||||
m_hashSize(hashSize),
|
||||
m_nodeCount(0)
|
||||
{
|
||||
dtAssert(dtNextPow2(m_hashSize) == (unsigned int)m_hashSize);
|
||||
// pidx is special as 0 means "none" and 1 is the first node. For that reason
|
||||
// we have 1 fewer nodes available than the number of values it can contain.
|
||||
dtAssert(m_maxNodes > 0 && m_maxNodes <= DT_NULL_IDX && m_maxNodes <= (1 << DT_NODE_PARENT_BITS) - 1);
|
||||
|
||||
m_nodes = (dtNode*)dtAlloc(sizeof(dtNode)*m_maxNodes, DT_ALLOC_PERM);
|
||||
m_next = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*m_maxNodes, DT_ALLOC_PERM);
|
||||
m_first = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*hashSize, DT_ALLOC_PERM);
|
||||
|
||||
dtAssert(m_nodes);
|
||||
dtAssert(m_next);
|
||||
dtAssert(m_first);
|
||||
|
||||
memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize);
|
||||
memset(m_next, 0xff, sizeof(dtNodeIndex)*m_maxNodes);
|
||||
}
|
||||
|
||||
dtNodePool::~dtNodePool()
|
||||
{
|
||||
dtFree(m_nodes);
|
||||
dtFree(m_next);
|
||||
dtFree(m_first);
|
||||
}
|
||||
|
||||
void dtNodePool::clear()
|
||||
{
|
||||
memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize);
|
||||
m_nodeCount = 0;
|
||||
}
|
||||
|
||||
unsigned int dtNodePool::findNodes(dtPolyRef id, dtNode** nodes, const int maxNodes)
|
||||
{
|
||||
int n = 0;
|
||||
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
||||
dtNodeIndex i = m_first[bucket];
|
||||
while (i != DT_NULL_IDX)
|
||||
{
|
||||
if (m_nodes[i].id == id)
|
||||
{
|
||||
if (n >= maxNodes)
|
||||
return n;
|
||||
nodes[n++] = &m_nodes[i];
|
||||
}
|
||||
i = m_next[i];
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
dtNode* dtNodePool::findNode(dtPolyRef id, unsigned char state)
|
||||
{
|
||||
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
||||
dtNodeIndex i = m_first[bucket];
|
||||
while (i != DT_NULL_IDX)
|
||||
{
|
||||
if (m_nodes[i].id == id && m_nodes[i].state == state)
|
||||
return &m_nodes[i];
|
||||
i = m_next[i];
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
dtNode* dtNodePool::getNode(dtPolyRef id, unsigned char state)
|
||||
{
|
||||
unsigned int bucket = dtHashRef(id) & (m_hashSize-1);
|
||||
dtNodeIndex i = m_first[bucket];
|
||||
dtNode* node = 0;
|
||||
while (i != DT_NULL_IDX)
|
||||
{
|
||||
if (m_nodes[i].id == id && m_nodes[i].state == state)
|
||||
return &m_nodes[i];
|
||||
i = m_next[i];
|
||||
}
|
||||
|
||||
if (m_nodeCount >= m_maxNodes)
|
||||
return 0;
|
||||
|
||||
i = (dtNodeIndex)m_nodeCount;
|
||||
m_nodeCount++;
|
||||
|
||||
// Init node
|
||||
node = &m_nodes[i];
|
||||
node->pidx = 0;
|
||||
node->cost = 0;
|
||||
node->total = 0;
|
||||
node->id = id;
|
||||
node->state = state;
|
||||
node->flags = 0;
|
||||
|
||||
m_next[i] = m_first[bucket];
|
||||
m_first[bucket] = i;
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
dtNodeQueue::dtNodeQueue(int n) :
|
||||
m_heap(0),
|
||||
m_capacity(n),
|
||||
m_size(0)
|
||||
{
|
||||
dtAssert(m_capacity > 0);
|
||||
|
||||
m_heap = (dtNode**)dtAlloc(sizeof(dtNode*)*(m_capacity+1), DT_ALLOC_PERM);
|
||||
dtAssert(m_heap);
|
||||
}
|
||||
|
||||
dtNodeQueue::~dtNodeQueue()
|
||||
{
|
||||
dtFree(m_heap);
|
||||
}
|
||||
|
||||
void dtNodeQueue::bubbleUp(int i, dtNode* node)
|
||||
{
|
||||
int parent = (i-1)/2;
|
||||
// note: (index > 0) means there is a parent
|
||||
while ((i > 0) && (m_heap[parent]->total > node->total))
|
||||
{
|
||||
m_heap[i] = m_heap[parent];
|
||||
i = parent;
|
||||
parent = (i-1)/2;
|
||||
}
|
||||
m_heap[i] = node;
|
||||
}
|
||||
|
||||
void dtNodeQueue::trickleDown(int i, dtNode* node)
|
||||
{
|
||||
int child = (i*2)+1;
|
||||
while (child < m_size)
|
||||
{
|
||||
if (((child+1) < m_size) &&
|
||||
(m_heap[child]->total > m_heap[child+1]->total))
|
||||
{
|
||||
child++;
|
||||
}
|
||||
m_heap[i] = m_heap[child];
|
||||
i = child;
|
||||
child = (i*2)+1;
|
||||
}
|
||||
bubbleUp(i, node);
|
||||
}
|
||||
247
libs/recast/detour_tile_cache/include/DetourTileCache.h
Normal file
247
libs/recast/detour_tile_cache/include/DetourTileCache.h
Normal file
@ -0,0 +1,247 @@
|
||||
#ifndef DETOURTILECACHE_H
|
||||
#define DETOURTILECACHE_H
|
||||
|
||||
#include "DetourStatus.h"
|
||||
|
||||
|
||||
|
||||
typedef unsigned int dtObstacleRef;
|
||||
|
||||
typedef unsigned int dtCompressedTileRef;
|
||||
|
||||
/// Flags for addTile
|
||||
enum dtCompressedTileFlags
|
||||
{
|
||||
DT_COMPRESSEDTILE_FREE_DATA = 0x01, ///< Navmesh owns the tile memory and should free it.
|
||||
};
|
||||
|
||||
struct dtCompressedTile
|
||||
{
|
||||
unsigned int salt; ///< Counter describing modifications to the tile.
|
||||
struct dtTileCacheLayerHeader* header;
|
||||
unsigned char* compressed;
|
||||
int compressedSize;
|
||||
unsigned char* data;
|
||||
int dataSize;
|
||||
unsigned int flags;
|
||||
dtCompressedTile* next;
|
||||
};
|
||||
|
||||
enum ObstacleState
|
||||
{
|
||||
DT_OBSTACLE_EMPTY,
|
||||
DT_OBSTACLE_PROCESSING,
|
||||
DT_OBSTACLE_PROCESSED,
|
||||
DT_OBSTACLE_REMOVING,
|
||||
};
|
||||
|
||||
enum ObstacleType
|
||||
{
|
||||
DT_OBSTACLE_CYLINDER,
|
||||
DT_OBSTACLE_BOX,
|
||||
};
|
||||
|
||||
struct dtObstacleCylinder
|
||||
{
|
||||
float pos[ 3 ];
|
||||
float radius;
|
||||
float height;
|
||||
};
|
||||
|
||||
struct dtObstacleBox
|
||||
{
|
||||
float bmin[ 3 ];
|
||||
float bmax[ 3 ];
|
||||
};
|
||||
|
||||
static const int DT_MAX_TOUCHED_TILES = 8;
|
||||
struct dtTileCacheObstacle
|
||||
{
|
||||
union
|
||||
{
|
||||
dtObstacleCylinder cylinder;
|
||||
dtObstacleBox box;
|
||||
};
|
||||
|
||||
dtCompressedTileRef touched[DT_MAX_TOUCHED_TILES];
|
||||
dtCompressedTileRef pending[DT_MAX_TOUCHED_TILES];
|
||||
unsigned short salt;
|
||||
unsigned char type;
|
||||
unsigned char state;
|
||||
unsigned char ntouched;
|
||||
unsigned char npending;
|
||||
dtTileCacheObstacle* next;
|
||||
};
|
||||
|
||||
struct dtTileCacheParams
|
||||
{
|
||||
float orig[3];
|
||||
float cs, ch;
|
||||
int width, height;
|
||||
float walkableHeight;
|
||||
float walkableRadius;
|
||||
float walkableClimb;
|
||||
float maxSimplificationError;
|
||||
int maxTiles;
|
||||
int maxObstacles;
|
||||
};
|
||||
|
||||
struct dtTileCacheMeshProcess
|
||||
{
|
||||
virtual ~dtTileCacheMeshProcess() { }
|
||||
|
||||
virtual void process(struct dtNavMeshCreateParams* params,
|
||||
unsigned char* polyAreas, unsigned short* polyFlags) = 0;
|
||||
};
|
||||
|
||||
|
||||
class dtTileCache
|
||||
{
|
||||
public:
|
||||
dtTileCache();
|
||||
~dtTileCache();
|
||||
|
||||
struct dtTileCacheAlloc* getAlloc() { return m_talloc; }
|
||||
struct dtTileCacheCompressor* getCompressor() { return m_tcomp; }
|
||||
const dtTileCacheParams* getParams() const { return &m_params; }
|
||||
|
||||
inline int getTileCount() const { return m_params.maxTiles; }
|
||||
inline const dtCompressedTile* getTile(const int i) const { return &m_tiles[i]; }
|
||||
|
||||
inline int getObstacleCount() const { return m_params.maxObstacles; }
|
||||
inline const dtTileCacheObstacle* getObstacle(const int i) const { return &m_obstacles[i]; }
|
||||
|
||||
const dtTileCacheObstacle* getObstacleByRef(dtObstacleRef ref);
|
||||
|
||||
dtObstacleRef getObstacleRef(const dtTileCacheObstacle* obmin) const;
|
||||
|
||||
dtStatus init(const dtTileCacheParams* params,
|
||||
struct dtTileCacheAlloc* talloc,
|
||||
struct dtTileCacheCompressor* tcomp,
|
||||
struct dtTileCacheMeshProcess* tmproc);
|
||||
|
||||
int getTilesAt(const int tx, const int ty, dtCompressedTileRef* tiles, const int maxTiles) const ;
|
||||
|
||||
dtCompressedTile* getTileAt(const int tx, const int ty, const int tlayer);
|
||||
dtCompressedTileRef getTileRef(const dtCompressedTile* tile) const;
|
||||
const dtCompressedTile* getTileByRef(dtCompressedTileRef ref) const;
|
||||
|
||||
dtStatus addTile(unsigned char* data, const int dataSize, unsigned char flags, dtCompressedTileRef* result);
|
||||
|
||||
dtStatus removeTile(dtCompressedTileRef ref, unsigned char** data, int* dataSize);
|
||||
|
||||
dtStatus addObstacle(const float* pos, const float radius, const float height, dtObstacleRef* result);
|
||||
dtStatus addBoxObstacle(const float* bmin, const float* bmax, dtObstacleRef* result);
|
||||
|
||||
dtStatus removeObstacle(const dtObstacleRef ref);
|
||||
|
||||
dtStatus queryTiles(const float* bmin, const float* bmax,
|
||||
dtCompressedTileRef* results, int* resultCount, const int maxResults) const;
|
||||
|
||||
/// Updates the tile cache by rebuilding tiles touched by unfinished obstacle requests.
|
||||
/// @param[in] dt The time step size. Currently not used.
|
||||
/// @param[in] navmesh The mesh to affect when rebuilding tiles.
|
||||
/// @param[out] upToDate Whether the tile cache is fully up to date with obstacle requests and tile rebuilds.
|
||||
/// If the tile cache is up to date another (immediate) call to update will have no effect;
|
||||
/// otherwise another call will continue processing obstacle requests and tile rebuilds.
|
||||
dtStatus update(const float dt, class dtNavMesh* navmesh, bool* upToDate = 0);
|
||||
|
||||
dtStatus buildNavMeshTilesAt(const int tx, const int ty, class dtNavMesh* navmesh);
|
||||
|
||||
dtStatus buildNavMeshTile(const dtCompressedTileRef ref, class dtNavMesh* navmesh);
|
||||
|
||||
void calcTightTileBounds(const struct dtTileCacheLayerHeader* header, float* bmin, float* bmax) const;
|
||||
|
||||
void getObstacleBounds(const struct dtTileCacheObstacle* ob, float* bmin, float* bmax) const;
|
||||
|
||||
|
||||
/// Encodes a tile id.
|
||||
inline dtCompressedTileRef encodeTileId(unsigned int salt, unsigned int it) const
|
||||
{
|
||||
return ((dtCompressedTileRef)salt << m_tileBits) | (dtCompressedTileRef)it;
|
||||
}
|
||||
|
||||
/// Decodes a tile salt.
|
||||
inline unsigned int decodeTileIdSalt(dtCompressedTileRef ref) const
|
||||
{
|
||||
const dtCompressedTileRef saltMask = ((dtCompressedTileRef)1<<m_saltBits)-1;
|
||||
return (unsigned int)((ref >> m_tileBits) & saltMask);
|
||||
}
|
||||
|
||||
/// Decodes a tile id.
|
||||
inline unsigned int decodeTileIdTile(dtCompressedTileRef ref) const
|
||||
{
|
||||
const dtCompressedTileRef tileMask = ((dtCompressedTileRef)1<<m_tileBits)-1;
|
||||
return (unsigned int)(ref & tileMask);
|
||||
}
|
||||
|
||||
/// Encodes an obstacle id.
|
||||
inline dtObstacleRef encodeObstacleId(unsigned int salt, unsigned int it) const
|
||||
{
|
||||
return ((dtObstacleRef)salt << 16) | (dtObstacleRef)it;
|
||||
}
|
||||
|
||||
/// Decodes an obstacle salt.
|
||||
inline unsigned int decodeObstacleIdSalt(dtObstacleRef ref) const
|
||||
{
|
||||
const dtObstacleRef saltMask = ((dtObstacleRef)1<<16)-1;
|
||||
return (unsigned int)((ref >> 16) & saltMask);
|
||||
}
|
||||
|
||||
/// Decodes an obstacle id.
|
||||
inline unsigned int decodeObstacleIdObstacle(dtObstacleRef ref) const
|
||||
{
|
||||
const dtObstacleRef tileMask = ((dtObstacleRef)1<<16)-1;
|
||||
return (unsigned int)(ref & tileMask);
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
dtTileCache(const dtTileCache&);
|
||||
dtTileCache& operator=(const dtTileCache&);
|
||||
|
||||
enum ObstacleRequestAction
|
||||
{
|
||||
REQUEST_ADD,
|
||||
REQUEST_REMOVE,
|
||||
};
|
||||
|
||||
struct ObstacleRequest
|
||||
{
|
||||
int action;
|
||||
dtObstacleRef ref;
|
||||
};
|
||||
|
||||
int m_tileLutSize; ///< Tile hash lookup size (must be pot).
|
||||
int m_tileLutMask; ///< Tile hash lookup mask.
|
||||
|
||||
dtCompressedTile** m_posLookup; ///< Tile hash lookup.
|
||||
dtCompressedTile* m_nextFreeTile; ///< Freelist of tiles.
|
||||
dtCompressedTile* m_tiles; ///< List of tiles.
|
||||
|
||||
unsigned int m_saltBits; ///< Number of salt bits in the tile ID.
|
||||
unsigned int m_tileBits; ///< Number of tile bits in the tile ID.
|
||||
|
||||
dtTileCacheParams m_params;
|
||||
|
||||
dtTileCacheAlloc* m_talloc;
|
||||
dtTileCacheCompressor* m_tcomp;
|
||||
dtTileCacheMeshProcess* m_tmproc;
|
||||
|
||||
dtTileCacheObstacle* m_obstacles;
|
||||
dtTileCacheObstacle* m_nextFreeObstacle;
|
||||
|
||||
static const int MAX_REQUESTS = 64;
|
||||
ObstacleRequest m_reqs[MAX_REQUESTS];
|
||||
int m_nreqs;
|
||||
|
||||
static const int MAX_UPDATE = 64;
|
||||
dtCompressedTileRef m_update[MAX_UPDATE];
|
||||
int m_nupdate;
|
||||
};
|
||||
|
||||
dtTileCache* dtAllocTileCache();
|
||||
void dtFreeTileCache(dtTileCache* tc);
|
||||
|
||||
#endif
|
||||
153
libs/recast/detour_tile_cache/include/DetourTileCacheBuilder.h
Normal file
153
libs/recast/detour_tile_cache/include/DetourTileCacheBuilder.h
Normal file
@ -0,0 +1,153 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef DETOURTILECACHEBUILDER_H
|
||||
#define DETOURTILECACHEBUILDER_H
|
||||
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourStatus.h"
|
||||
|
||||
static const int DT_TILECACHE_MAGIC = 'D'<<24 | 'T'<<16 | 'L'<<8 | 'R'; ///< 'DTLR';
|
||||
static const int DT_TILECACHE_VERSION = 1;
|
||||
|
||||
static const unsigned char DT_TILECACHE_NULL_AREA = 0;
|
||||
static const unsigned char DT_TILECACHE_WALKABLE_AREA = 63;
|
||||
static const unsigned short DT_TILECACHE_NULL_IDX = 0xffff;
|
||||
|
||||
struct dtTileCacheLayerHeader
|
||||
{
|
||||
int magic; ///< Data magic
|
||||
int version; ///< Data version
|
||||
int tx,ty,tlayer;
|
||||
float bmin[3], bmax[3];
|
||||
unsigned short hmin, hmax; ///< Height min/max range
|
||||
unsigned char width, height; ///< Dimension of the layer.
|
||||
unsigned char minx, maxx, miny, maxy; ///< Usable sub-region.
|
||||
};
|
||||
|
||||
struct dtTileCacheLayer
|
||||
{
|
||||
dtTileCacheLayerHeader* header;
|
||||
unsigned char regCount; ///< Region count.
|
||||
unsigned char* heights;
|
||||
unsigned char* areas;
|
||||
unsigned char* cons;
|
||||
unsigned char* regs;
|
||||
};
|
||||
|
||||
struct dtTileCacheContour
|
||||
{
|
||||
int nverts;
|
||||
unsigned char* verts;
|
||||
unsigned char reg;
|
||||
unsigned char area;
|
||||
};
|
||||
|
||||
struct dtTileCacheContourSet
|
||||
{
|
||||
int nconts;
|
||||
dtTileCacheContour* conts;
|
||||
};
|
||||
|
||||
struct dtTileCachePolyMesh
|
||||
{
|
||||
int nvp;
|
||||
int nverts; ///< Number of vertices.
|
||||
int npolys; ///< Number of polygons.
|
||||
unsigned short* verts; ///< Vertices of the mesh, 3 elements per vertex.
|
||||
unsigned short* polys; ///< Polygons of the mesh, nvp*2 elements per polygon.
|
||||
unsigned short* flags; ///< Per polygon flags.
|
||||
unsigned char* areas; ///< Area ID of polygons.
|
||||
};
|
||||
|
||||
|
||||
struct dtTileCacheAlloc
|
||||
{
|
||||
virtual ~dtTileCacheAlloc() {}
|
||||
|
||||
virtual void reset() {}
|
||||
|
||||
virtual void* alloc(const size_t size)
|
||||
{
|
||||
return dtAlloc(size, DT_ALLOC_TEMP);
|
||||
}
|
||||
|
||||
virtual void free(void* ptr)
|
||||
{
|
||||
dtFree(ptr);
|
||||
}
|
||||
};
|
||||
|
||||
struct dtTileCacheCompressor
|
||||
{
|
||||
virtual ~dtTileCacheCompressor() { }
|
||||
|
||||
virtual int maxCompressedSize(const int bufferSize) = 0;
|
||||
virtual dtStatus compress(const unsigned char* buffer, const int bufferSize,
|
||||
unsigned char* compressed, const int maxCompressedSize, int* compressedSize) = 0;
|
||||
virtual dtStatus decompress(const unsigned char* compressed, const int compressedSize,
|
||||
unsigned char* buffer, const int maxBufferSize, int* bufferSize) = 0;
|
||||
};
|
||||
|
||||
|
||||
dtStatus dtBuildTileCacheLayer(dtTileCacheCompressor* comp,
|
||||
dtTileCacheLayerHeader* header,
|
||||
const unsigned char* heights,
|
||||
const unsigned char* areas,
|
||||
const unsigned char* cons,
|
||||
unsigned char** outData, int* outDataSize);
|
||||
|
||||
void dtFreeTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheLayer* layer);
|
||||
|
||||
dtStatus dtDecompressTileCacheLayer(dtTileCacheAlloc* alloc, dtTileCacheCompressor* comp,
|
||||
unsigned char* compressed, const int compressedSize,
|
||||
dtTileCacheLayer** layerOut);
|
||||
|
||||
dtTileCacheContourSet* dtAllocTileCacheContourSet(dtTileCacheAlloc* alloc);
|
||||
void dtFreeTileCacheContourSet(dtTileCacheAlloc* alloc, dtTileCacheContourSet* cset);
|
||||
|
||||
dtTileCachePolyMesh* dtAllocTileCachePolyMesh(dtTileCacheAlloc* alloc);
|
||||
void dtFreeTileCachePolyMesh(dtTileCacheAlloc* alloc, dtTileCachePolyMesh* lmesh);
|
||||
|
||||
dtStatus dtMarkCylinderArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
|
||||
const float* pos, const float radius, const float height, const unsigned char areaId);
|
||||
|
||||
dtStatus dtMarkBoxArea(dtTileCacheLayer& layer, const float* orig, const float cs, const float ch,
|
||||
const float* bmin, const float* bmax, const unsigned char areaId);
|
||||
|
||||
dtStatus dtBuildTileCacheRegions(dtTileCacheAlloc* alloc,
|
||||
dtTileCacheLayer& layer,
|
||||
const int walkableClimb);
|
||||
|
||||
dtStatus dtBuildTileCacheContours(dtTileCacheAlloc* alloc,
|
||||
dtTileCacheLayer& layer,
|
||||
const int walkableClimb, const float maxError,
|
||||
dtTileCacheContourSet& lcset);
|
||||
|
||||
dtStatus dtBuildTileCachePolyMesh(dtTileCacheAlloc* alloc,
|
||||
dtTileCacheContourSet& lcset,
|
||||
dtTileCachePolyMesh& mesh);
|
||||
|
||||
/// Swaps the endianess of the compressed tile data's header (#dtTileCacheLayerHeader).
|
||||
/// Tile layer data does not need endian swapping as it consits only of bytes.
|
||||
/// @param[in,out] data The tile data array.
|
||||
/// @param[in] dataSize The size of the data array.
|
||||
bool dtTileCacheHeaderSwapEndian(unsigned char* data, const int dataSize);
|
||||
|
||||
|
||||
#endif // DETOURTILECACHEBUILDER_H
|
||||
764
libs/recast/detour_tile_cache/src/DetourTileCache.cpp
Normal file
764
libs/recast/detour_tile_cache/src/DetourTileCache.cpp
Normal file
@ -0,0 +1,764 @@
|
||||
#include "DetourTileCache.h"
|
||||
#include "DetourTileCacheBuilder.h"
|
||||
#include "DetourNavMeshBuilder.h"
|
||||
#include "DetourNavMesh.h"
|
||||
#include "DetourCommon.h"
|
||||
#include "DetourMath.h"
|
||||
#include "DetourAlloc.h"
|
||||
#include "DetourAssert.h"
|
||||
#include <string.h>
|
||||
#include <new>
|
||||
|
||||
dtTileCache* dtAllocTileCache()
|
||||
{
|
||||
void* mem = dtAlloc(sizeof(dtTileCache), DT_ALLOC_PERM);
|
||||
if (!mem) return 0;
|
||||
return new(mem) dtTileCache;
|
||||
}
|
||||
|
||||
void dtFreeTileCache(dtTileCache* tc)
|
||||
{
|
||||
if (!tc) return;
|
||||
tc->~dtTileCache();
|
||||
dtFree(tc);
|
||||
}
|
||||
|
||||
static bool contains(const dtCompressedTileRef* a, const int n, const dtCompressedTileRef v)
|
||||
{
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (a[i] == v)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
inline int computeTileHash(int x, int y, const int mask)
|
||||
{
|
||||
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
|
||||
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
|
||||
unsigned int n = h1 * x + h2 * y;
|
||||
return (int)(n & mask);
|
||||
}
|
||||
|
||||
|
||||
struct NavMeshTileBuildContext
|
||||
{
|
||||
inline NavMeshTileBuildContext(struct dtTileCacheAlloc* a) : layer(0), lcset(0), lmesh(0), alloc(a) {}
|
||||
inline ~NavMeshTileBuildContext() { purge(); }
|
||||
void purge()
|
||||
{
|
||||
dtFreeTileCacheLayer(alloc, layer);
|
||||
layer = 0;
|
||||
dtFreeTileCacheContourSet(alloc, lcset);
|
||||
lcset = 0;
|
||||
dtFreeTileCachePolyMesh(alloc, lmesh);
|
||||
lmesh = 0;
|
||||
}
|
||||
struct dtTileCacheLayer* layer;
|
||||
struct dtTileCacheContourSet* lcset;
|
||||
struct dtTileCachePolyMesh* lmesh;
|
||||
struct dtTileCacheAlloc* alloc;
|
||||
};
|
||||
|
||||
|
||||
dtTileCache::dtTileCache() :
|
||||
m_tileLutSize(0),
|
||||
m_tileLutMask(0),
|
||||
m_posLookup(0),
|
||||
m_nextFreeTile(0),
|
||||
m_tiles(0),
|
||||
m_saltBits(0),
|
||||
m_tileBits(0),
|
||||
m_talloc(0),
|
||||
m_tcomp(0),
|
||||
m_tmproc(0),
|
||||
m_obstacles(0),
|
||||
m_nextFreeObstacle(0),
|
||||
m_nreqs(0),
|
||||
m_nupdate(0)
|
||||
{
|
||||
memset(&m_params, 0, sizeof(m_params));
|
||||
memset(m_reqs, 0, sizeof(ObstacleRequest) * MAX_REQUESTS);
|
||||
}
|
||||
|
||||
dtTileCache::~dtTileCache()
|
||||
{
|
||||
for (int i = 0; i < m_params.maxTiles; ++i)
|
||||
{
|
||||
if (m_tiles[i].flags & DT_COMPRESSEDTILE_FREE_DATA)
|
||||
{
|
||||
dtFree(m_tiles[i].data);
|
||||
m_tiles[i].data = 0;
|
||||
}
|
||||
}
|
||||
dtFree(m_obstacles);
|
||||
m_obstacles = 0;
|
||||
dtFree(m_posLookup);
|
||||
m_posLookup = 0;
|
||||
dtFree(m_tiles);
|
||||
m_tiles = 0;
|
||||
m_nreqs = 0;
|
||||
m_nupdate = 0;
|
||||
}
|
||||
|
||||
const dtCompressedTile* dtTileCache::getTileByRef(dtCompressedTileRef ref) const
|
||||
{
|
||||
if (!ref)
|
||||
return 0;
|
||||
unsigned int tileIndex = decodeTileIdTile(ref);
|
||||
unsigned int tileSalt = decodeTileIdSalt(ref);
|
||||
if ((int)tileIndex >= m_params.maxTiles)
|
||||
return 0;
|
||||
const dtCompressedTile* tile = &m_tiles[tileIndex];
|
||||
if (tile->salt != tileSalt)
|
||||
return 0;
|
||||
return tile;
|
||||
}
|
||||
|
||||
|
||||
dtStatus dtTileCache::init(const dtTileCacheParams* params,
|
||||
dtTileCacheAlloc* talloc,
|
||||
dtTileCacheCompressor* tcomp,
|
||||
dtTileCacheMeshProcess* tmproc)
|
||||
{
|
||||
m_talloc = talloc;
|
||||
m_tcomp = tcomp;
|
||||
m_tmproc = tmproc;
|
||||
m_nreqs = 0;
|
||||
memcpy(&m_params, params, sizeof(m_params));
|
||||
|
||||
// Alloc space for obstacles.
|
||||
m_obstacles = (dtTileCacheObstacle*)dtAlloc(sizeof(dtTileCacheObstacle)*m_params.maxObstacles, DT_ALLOC_PERM);
|
||||
if (!m_obstacles)
|
||||
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
||||
memset(m_obstacles, 0, sizeof(dtTileCacheObstacle)*m_params.maxObstacles);
|
||||
m_nextFreeObstacle = 0;
|
||||
for (int i = m_params.maxObstacles-1; i >= 0; --i)
|
||||
{
|
||||
m_obstacles[i].salt = 1;
|
||||
m_obstacles[i].next = m_nextFreeObstacle;
|
||||
m_nextFreeObstacle = &m_obstacles[i];
|
||||
}
|
||||
|
||||
// Init tiles
|
||||
m_tileLutSize = dtNextPow2(m_params.maxTiles/4);
|
||||
if (!m_tileLutSize) m_tileLutSize = 1;
|
||||
m_tileLutMask = m_tileLutSize-1;
|
||||
|
||||
m_tiles = (dtCompressedTile*)dtAlloc(sizeof(dtCompressedTile)*m_params.maxTiles, DT_ALLOC_PERM);
|
||||
if (!m_tiles)
|
||||
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
||||
m_posLookup = (dtCompressedTile**)dtAlloc(sizeof(dtCompressedTile*)*m_tileLutSize, DT_ALLOC_PERM);
|
||||
if (!m_posLookup)
|
||||
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
||||
memset(m_tiles, 0, sizeof(dtCompressedTile)*m_params.maxTiles);
|
||||
memset(m_posLookup, 0, sizeof(dtCompressedTile*)*m_tileLutSize);
|
||||
m_nextFreeTile = 0;
|
||||
for (int i = m_params.maxTiles-1; i >= 0; --i)
|
||||
{
|
||||
m_tiles[i].salt = 1;
|
||||
m_tiles[i].next = m_nextFreeTile;
|
||||
m_nextFreeTile = &m_tiles[i];
|
||||
}
|
||||
|
||||
// Init ID generator values.
|
||||
m_tileBits = dtIlog2(dtNextPow2((unsigned int)m_params.maxTiles));
|
||||
// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
|
||||
m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits);
|
||||
if (m_saltBits < 10)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
int dtTileCache::getTilesAt(const int tx, const int ty, dtCompressedTileRef* tiles, const int maxTiles) const
|
||||
{
|
||||
int n = 0;
|
||||
|
||||
// Find tile based on hash.
|
||||
int h = computeTileHash(tx,ty,m_tileLutMask);
|
||||
dtCompressedTile* tile = m_posLookup[h];
|
||||
while (tile)
|
||||
{
|
||||
if (tile->header &&
|
||||
tile->header->tx == tx &&
|
||||
tile->header->ty == ty)
|
||||
{
|
||||
if (n < maxTiles)
|
||||
tiles[n++] = getTileRef(tile);
|
||||
}
|
||||
tile = tile->next;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
dtCompressedTile* dtTileCache::getTileAt(const int tx, const int ty, const int tlayer)
|
||||
{
|
||||
// Find tile based on hash.
|
||||
int h = computeTileHash(tx,ty,m_tileLutMask);
|
||||
dtCompressedTile* tile = m_posLookup[h];
|
||||
while (tile)
|
||||
{
|
||||
if (tile->header &&
|
||||
tile->header->tx == tx &&
|
||||
tile->header->ty == ty &&
|
||||
tile->header->tlayer == tlayer)
|
||||
{
|
||||
return tile;
|
||||
}
|
||||
tile = tile->next;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
dtCompressedTileRef dtTileCache::getTileRef(const dtCompressedTile* tile) const
|
||||
{
|
||||
if (!tile) return 0;
|
||||
const unsigned int it = (unsigned int)(tile - m_tiles);
|
||||
return (dtCompressedTileRef)encodeTileId(tile->salt, it);
|
||||
}
|
||||
|
||||
dtObstacleRef dtTileCache::getObstacleRef(const dtTileCacheObstacle* ob) const
|
||||
{
|
||||
if (!ob) return 0;
|
||||
const unsigned int idx = (unsigned int)(ob - m_obstacles);
|
||||
return encodeObstacleId(ob->salt, idx);
|
||||
}
|
||||
|
||||
const dtTileCacheObstacle* dtTileCache::getObstacleByRef(dtObstacleRef ref)
|
||||
{
|
||||
if (!ref)
|
||||
return 0;
|
||||
unsigned int idx = decodeObstacleIdObstacle(ref);
|
||||
if ((int)idx >= m_params.maxObstacles)
|
||||
return 0;
|
||||
const dtTileCacheObstacle* ob = &m_obstacles[idx];
|
||||
unsigned int salt = decodeObstacleIdSalt(ref);
|
||||
if (ob->salt != salt)
|
||||
return 0;
|
||||
return ob;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::addTile(unsigned char* data, const int dataSize, unsigned char flags, dtCompressedTileRef* result)
|
||||
{
|
||||
// Make sure the data is in right format.
|
||||
dtTileCacheLayerHeader* header = (dtTileCacheLayerHeader*)data;
|
||||
if (header->magic != DT_TILECACHE_MAGIC)
|
||||
return DT_FAILURE | DT_WRONG_MAGIC;
|
||||
if (header->version != DT_TILECACHE_VERSION)
|
||||
return DT_FAILURE | DT_WRONG_VERSION;
|
||||
|
||||
// Make sure the location is free.
|
||||
if (getTileAt(header->tx, header->ty, header->tlayer))
|
||||
return DT_FAILURE;
|
||||
|
||||
// Allocate a tile.
|
||||
dtCompressedTile* tile = 0;
|
||||
if (m_nextFreeTile)
|
||||
{
|
||||
tile = m_nextFreeTile;
|
||||
m_nextFreeTile = tile->next;
|
||||
tile->next = 0;
|
||||
}
|
||||
|
||||
// Make sure we could allocate a tile.
|
||||
if (!tile)
|
||||
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
||||
|
||||
// Insert tile into the position lut.
|
||||
int h = computeTileHash(header->tx, header->ty, m_tileLutMask);
|
||||
tile->next = m_posLookup[h];
|
||||
m_posLookup[h] = tile;
|
||||
|
||||
// Init tile.
|
||||
const int headerSize = dtAlign4(sizeof(dtTileCacheLayerHeader));
|
||||
tile->header = (dtTileCacheLayerHeader*)data;
|
||||
tile->data = data;
|
||||
tile->dataSize = dataSize;
|
||||
tile->compressed = tile->data + headerSize;
|
||||
tile->compressedSize = tile->dataSize - headerSize;
|
||||
tile->flags = flags;
|
||||
|
||||
if (result)
|
||||
*result = getTileRef(tile);
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::removeTile(dtCompressedTileRef ref, unsigned char** data, int* dataSize)
|
||||
{
|
||||
if (!ref)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
unsigned int tileIndex = decodeTileIdTile(ref);
|
||||
unsigned int tileSalt = decodeTileIdSalt(ref);
|
||||
if ((int)tileIndex >= m_params.maxTiles)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
dtCompressedTile* tile = &m_tiles[tileIndex];
|
||||
if (tile->salt != tileSalt)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
// Remove tile from hash lookup.
|
||||
const int h = computeTileHash(tile->header->tx,tile->header->ty,m_tileLutMask);
|
||||
dtCompressedTile* prev = 0;
|
||||
dtCompressedTile* cur = m_posLookup[h];
|
||||
while (cur)
|
||||
{
|
||||
if (cur == tile)
|
||||
{
|
||||
if (prev)
|
||||
prev->next = cur->next;
|
||||
else
|
||||
m_posLookup[h] = cur->next;
|
||||
break;
|
||||
}
|
||||
prev = cur;
|
||||
cur = cur->next;
|
||||
}
|
||||
|
||||
// Reset tile.
|
||||
if (tile->flags & DT_COMPRESSEDTILE_FREE_DATA)
|
||||
{
|
||||
// Owns data
|
||||
dtFree(tile->data);
|
||||
tile->data = 0;
|
||||
tile->dataSize = 0;
|
||||
if (data) *data = 0;
|
||||
if (dataSize) *dataSize = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (data) *data = tile->data;
|
||||
if (dataSize) *dataSize = tile->dataSize;
|
||||
}
|
||||
|
||||
tile->header = 0;
|
||||
tile->data = 0;
|
||||
tile->dataSize = 0;
|
||||
tile->compressed = 0;
|
||||
tile->compressedSize = 0;
|
||||
tile->flags = 0;
|
||||
|
||||
// Update salt, salt should never be zero.
|
||||
tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
|
||||
if (tile->salt == 0)
|
||||
tile->salt++;
|
||||
|
||||
// Add to free list.
|
||||
tile->next = m_nextFreeTile;
|
||||
m_nextFreeTile = tile;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
|
||||
dtStatus dtTileCache::addObstacle(const float* pos, const float radius, const float height, dtObstacleRef* result)
|
||||
{
|
||||
if (m_nreqs >= MAX_REQUESTS)
|
||||
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
||||
|
||||
dtTileCacheObstacle* ob = 0;
|
||||
if (m_nextFreeObstacle)
|
||||
{
|
||||
ob = m_nextFreeObstacle;
|
||||
m_nextFreeObstacle = ob->next;
|
||||
ob->next = 0;
|
||||
}
|
||||
if (!ob)
|
||||
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
||||
|
||||
unsigned short salt = ob->salt;
|
||||
memset(ob, 0, sizeof(dtTileCacheObstacle));
|
||||
ob->salt = salt;
|
||||
ob->state = DT_OBSTACLE_PROCESSING;
|
||||
ob->type = DT_OBSTACLE_CYLINDER;
|
||||
dtVcopy(ob->cylinder.pos, pos);
|
||||
ob->cylinder.radius = radius;
|
||||
ob->cylinder.height = height;
|
||||
|
||||
ObstacleRequest* req = &m_reqs[m_nreqs++];
|
||||
memset(req, 0, sizeof(ObstacleRequest));
|
||||
req->action = REQUEST_ADD;
|
||||
req->ref = getObstacleRef(ob);
|
||||
|
||||
if (result)
|
||||
*result = req->ref;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::addBoxObstacle(const float* bmin, const float* bmax, dtObstacleRef* result)
|
||||
{
|
||||
if (m_nreqs >= MAX_REQUESTS)
|
||||
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
||||
|
||||
dtTileCacheObstacle* ob = 0;
|
||||
if (m_nextFreeObstacle)
|
||||
{
|
||||
ob = m_nextFreeObstacle;
|
||||
m_nextFreeObstacle = ob->next;
|
||||
ob->next = 0;
|
||||
}
|
||||
if (!ob)
|
||||
return DT_FAILURE | DT_OUT_OF_MEMORY;
|
||||
|
||||
unsigned short salt = ob->salt;
|
||||
memset(ob, 0, sizeof(dtTileCacheObstacle));
|
||||
ob->salt = salt;
|
||||
ob->state = DT_OBSTACLE_PROCESSING;
|
||||
ob->type = DT_OBSTACLE_BOX;
|
||||
dtVcopy(ob->box.bmin, bmin);
|
||||
dtVcopy(ob->box.bmax, bmax);
|
||||
|
||||
ObstacleRequest* req = &m_reqs[m_nreqs++];
|
||||
memset(req, 0, sizeof(ObstacleRequest));
|
||||
req->action = REQUEST_ADD;
|
||||
req->ref = getObstacleRef(ob);
|
||||
|
||||
if (result)
|
||||
*result = req->ref;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::removeObstacle(const dtObstacleRef ref)
|
||||
{
|
||||
if (!ref)
|
||||
return DT_SUCCESS;
|
||||
if (m_nreqs >= MAX_REQUESTS)
|
||||
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
|
||||
|
||||
ObstacleRequest* req = &m_reqs[m_nreqs++];
|
||||
memset(req, 0, sizeof(ObstacleRequest));
|
||||
req->action = REQUEST_REMOVE;
|
||||
req->ref = ref;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::queryTiles(const float* bmin, const float* bmax,
|
||||
dtCompressedTileRef* results, int* resultCount, const int maxResults) const
|
||||
{
|
||||
const int MAX_TILES = 32;
|
||||
dtCompressedTileRef tiles[MAX_TILES];
|
||||
|
||||
int n = 0;
|
||||
|
||||
const float tw = m_params.width * m_params.cs;
|
||||
const float th = m_params.height * m_params.cs;
|
||||
const int tx0 = (int)dtMathFloorf((bmin[0]-m_params.orig[0]) / tw);
|
||||
const int tx1 = (int)dtMathFloorf((bmax[0]-m_params.orig[0]) / tw);
|
||||
const int ty0 = (int)dtMathFloorf((bmin[2]-m_params.orig[2]) / th);
|
||||
const int ty1 = (int)dtMathFloorf((bmax[2]-m_params.orig[2]) / th);
|
||||
|
||||
for (int ty = ty0; ty <= ty1; ++ty)
|
||||
{
|
||||
for (int tx = tx0; tx <= tx1; ++tx)
|
||||
{
|
||||
const int ntiles = getTilesAt(tx,ty,tiles,MAX_TILES);
|
||||
|
||||
for (int i = 0; i < ntiles; ++i)
|
||||
{
|
||||
const dtCompressedTile* tile = &m_tiles[decodeTileIdTile(tiles[i])];
|
||||
float tbmin[3], tbmax[3];
|
||||
calcTightTileBounds(tile->header, tbmin, tbmax);
|
||||
|
||||
if (dtOverlapBounds(bmin,bmax, tbmin,tbmax))
|
||||
{
|
||||
if (n < maxResults)
|
||||
results[n++] = tiles[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*resultCount = n;
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::update(const float /*dt*/, dtNavMesh* navmesh,
|
||||
bool* upToDate)
|
||||
{
|
||||
if (m_nupdate == 0)
|
||||
{
|
||||
// Process requests.
|
||||
for (int i = 0; i < m_nreqs; ++i)
|
||||
{
|
||||
ObstacleRequest* req = &m_reqs[i];
|
||||
|
||||
unsigned int idx = decodeObstacleIdObstacle(req->ref);
|
||||
if ((int)idx >= m_params.maxObstacles)
|
||||
continue;
|
||||
dtTileCacheObstacle* ob = &m_obstacles[idx];
|
||||
unsigned int salt = decodeObstacleIdSalt(req->ref);
|
||||
if (ob->salt != salt)
|
||||
continue;
|
||||
|
||||
if (req->action == REQUEST_ADD)
|
||||
{
|
||||
// Find touched tiles.
|
||||
float bmin[3], bmax[3];
|
||||
getObstacleBounds(ob, bmin, bmax);
|
||||
|
||||
int ntouched = 0;
|
||||
queryTiles(bmin, bmax, ob->touched, &ntouched, DT_MAX_TOUCHED_TILES);
|
||||
ob->ntouched = (unsigned char)ntouched;
|
||||
// Add tiles to update list.
|
||||
ob->npending = 0;
|
||||
for (int j = 0; j < ob->ntouched; ++j)
|
||||
{
|
||||
if (m_nupdate < MAX_UPDATE)
|
||||
{
|
||||
if (!contains(m_update, m_nupdate, ob->touched[j]))
|
||||
m_update[m_nupdate++] = ob->touched[j];
|
||||
ob->pending[ob->npending++] = ob->touched[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (req->action == REQUEST_REMOVE)
|
||||
{
|
||||
// Prepare to remove obstacle.
|
||||
ob->state = DT_OBSTACLE_REMOVING;
|
||||
// Add tiles to update list.
|
||||
ob->npending = 0;
|
||||
for (int j = 0; j < ob->ntouched; ++j)
|
||||
{
|
||||
if (m_nupdate < MAX_UPDATE)
|
||||
{
|
||||
if (!contains(m_update, m_nupdate, ob->touched[j]))
|
||||
m_update[m_nupdate++] = ob->touched[j];
|
||||
ob->pending[ob->npending++] = ob->touched[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m_nreqs = 0;
|
||||
}
|
||||
|
||||
dtStatus status = DT_SUCCESS;
|
||||
// Process updates
|
||||
if (m_nupdate)
|
||||
{
|
||||
// Build mesh
|
||||
const dtCompressedTileRef ref = m_update[0];
|
||||
status = buildNavMeshTile(ref, navmesh);
|
||||
m_nupdate--;
|
||||
if (m_nupdate > 0)
|
||||
memmove(m_update, m_update+1, m_nupdate*sizeof(dtCompressedTileRef));
|
||||
|
||||
// Update obstacle states.
|
||||
for (int i = 0; i < m_params.maxObstacles; ++i)
|
||||
{
|
||||
dtTileCacheObstacle* ob = &m_obstacles[i];
|
||||
if (ob->state == DT_OBSTACLE_PROCESSING || ob->state == DT_OBSTACLE_REMOVING)
|
||||
{
|
||||
// Remove handled tile from pending list.
|
||||
for (int j = 0; j < (int)ob->npending; j++)
|
||||
{
|
||||
if (ob->pending[j] == ref)
|
||||
{
|
||||
ob->pending[j] = ob->pending[(int)ob->npending-1];
|
||||
ob->npending--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If all pending tiles processed, change state.
|
||||
if (ob->npending == 0)
|
||||
{
|
||||
if (ob->state == DT_OBSTACLE_PROCESSING)
|
||||
{
|
||||
ob->state = DT_OBSTACLE_PROCESSED;
|
||||
}
|
||||
else if (ob->state == DT_OBSTACLE_REMOVING)
|
||||
{
|
||||
ob->state = DT_OBSTACLE_EMPTY;
|
||||
// Update salt, salt should never be zero.
|
||||
ob->salt = (ob->salt+1) & ((1<<16)-1);
|
||||
if (ob->salt == 0)
|
||||
ob->salt++;
|
||||
// Return obstacle to free list.
|
||||
ob->next = m_nextFreeObstacle;
|
||||
m_nextFreeObstacle = ob;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (upToDate)
|
||||
*upToDate = m_nupdate == 0 && m_nreqs == 0;
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
|
||||
dtStatus dtTileCache::buildNavMeshTilesAt(const int tx, const int ty, dtNavMesh* navmesh)
|
||||
{
|
||||
const int MAX_TILES = 32;
|
||||
dtCompressedTileRef tiles[MAX_TILES];
|
||||
const int ntiles = getTilesAt(tx,ty,tiles,MAX_TILES);
|
||||
|
||||
for (int i = 0; i < ntiles; ++i)
|
||||
{
|
||||
dtStatus status = buildNavMeshTile(tiles[i], navmesh);
|
||||
if (dtStatusFailed(status))
|
||||
return status;
|
||||
}
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtStatus dtTileCache::buildNavMeshTile(const dtCompressedTileRef ref, dtNavMesh* navmesh)
|
||||
{
|
||||
dtAssert(m_talloc);
|
||||
dtAssert(m_tcomp);
|
||||
|
||||
unsigned int idx = decodeTileIdTile(ref);
|
||||
if (idx > (unsigned int)m_params.maxTiles)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
const dtCompressedTile* tile = &m_tiles[idx];
|
||||
unsigned int salt = decodeTileIdSalt(ref);
|
||||
if (tile->salt != salt)
|
||||
return DT_FAILURE | DT_INVALID_PARAM;
|
||||
|
||||
m_talloc->reset();
|
||||
|
||||
NavMeshTileBuildContext bc(m_talloc);
|
||||
const int walkableClimbVx = (int)(m_params.walkableClimb / m_params.ch);
|
||||
dtStatus status;
|
||||
|
||||
// Decompress tile layer data.
|
||||
status = dtDecompressTileCacheLayer(m_talloc, m_tcomp, tile->data, tile->dataSize, &bc.layer);
|
||||
if (dtStatusFailed(status))
|
||||
return status;
|
||||
|
||||
// Rasterize obstacles.
|
||||
for (int i = 0; i < m_params.maxObstacles; ++i)
|
||||
{
|
||||
const dtTileCacheObstacle* ob = &m_obstacles[i];
|
||||
if (ob->state == DT_OBSTACLE_EMPTY || ob->state == DT_OBSTACLE_REMOVING)
|
||||
continue;
|
||||
if (contains(ob->touched, ob->ntouched, ref))
|
||||
{
|
||||
if (ob->type == DT_OBSTACLE_CYLINDER)
|
||||
{
|
||||
dtMarkCylinderArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
|
||||
ob->cylinder.pos, ob->cylinder.radius, ob->cylinder.height, 0);
|
||||
}
|
||||
else if (ob->type == DT_OBSTACLE_BOX)
|
||||
{
|
||||
dtMarkBoxArea(*bc.layer, tile->header->bmin, m_params.cs, m_params.ch,
|
||||
ob->box.bmin, ob->box.bmax, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Build navmesh
|
||||
status = dtBuildTileCacheRegions(m_talloc, *bc.layer, walkableClimbVx);
|
||||
if (dtStatusFailed(status))
|
||||
return status;
|
||||
|
||||
bc.lcset = dtAllocTileCacheContourSet(m_talloc);
|
||||
if (!bc.lcset)
|
||||
return status;
|
||||
status = dtBuildTileCacheContours(m_talloc, *bc.layer, walkableClimbVx,
|
||||
m_params.maxSimplificationError, *bc.lcset);
|
||||
if (dtStatusFailed(status))
|
||||
return status;
|
||||
|
||||
bc.lmesh = dtAllocTileCachePolyMesh(m_talloc);
|
||||
if (!bc.lmesh)
|
||||
return status;
|
||||
status = dtBuildTileCachePolyMesh(m_talloc, *bc.lcset, *bc.lmesh);
|
||||
if (dtStatusFailed(status))
|
||||
return status;
|
||||
|
||||
// Early out if the mesh tile is empty.
|
||||
if (!bc.lmesh->npolys)
|
||||
{
|
||||
// Remove existing tile.
|
||||
navmesh->removeTile(navmesh->getTileRefAt(tile->header->tx,tile->header->ty,tile->header->tlayer),0,0);
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
dtNavMeshCreateParams params;
|
||||
memset(¶ms, 0, sizeof(params));
|
||||
params.verts = bc.lmesh->verts;
|
||||
params.vertCount = bc.lmesh->nverts;
|
||||
params.polys = bc.lmesh->polys;
|
||||
params.polyAreas = bc.lmesh->areas;
|
||||
params.polyFlags = bc.lmesh->flags;
|
||||
params.polyCount = bc.lmesh->npolys;
|
||||
params.nvp = DT_VERTS_PER_POLYGON;
|
||||
params.walkableHeight = m_params.walkableHeight;
|
||||
params.walkableRadius = m_params.walkableRadius;
|
||||
params.walkableClimb = m_params.walkableClimb;
|
||||
params.tileX = tile->header->tx;
|
||||
params.tileY = tile->header->ty;
|
||||
params.tileLayer = tile->header->tlayer;
|
||||
params.cs = m_params.cs;
|
||||
params.ch = m_params.ch;
|
||||
params.buildBvTree = false;
|
||||
dtVcopy(params.bmin, tile->header->bmin);
|
||||
dtVcopy(params.bmax, tile->header->bmax);
|
||||
|
||||
if (m_tmproc)
|
||||
{
|
||||
m_tmproc->process(¶ms, bc.lmesh->areas, bc.lmesh->flags);
|
||||
}
|
||||
|
||||
unsigned char* navData = 0;
|
||||
int navDataSize = 0;
|
||||
if (!dtCreateNavMeshData(¶ms, &navData, &navDataSize))
|
||||
return DT_FAILURE;
|
||||
|
||||
// Remove existing tile.
|
||||
navmesh->removeTile(navmesh->getTileRefAt(tile->header->tx,tile->header->ty,tile->header->tlayer),0,0);
|
||||
|
||||
// Add new tile, or leave the location empty.
|
||||
if (navData)
|
||||
{
|
||||
// Let the navmesh own the data.
|
||||
status = navmesh->addTile(navData,navDataSize,DT_TILE_FREE_DATA,0,0);
|
||||
if (dtStatusFailed(status))
|
||||
{
|
||||
dtFree(navData);
|
||||
return status;
|
||||
}
|
||||
}
|
||||
|
||||
return DT_SUCCESS;
|
||||
}
|
||||
|
||||
void dtTileCache::calcTightTileBounds(const dtTileCacheLayerHeader* header, float* bmin, float* bmax) const
|
||||
{
|
||||
const float cs = m_params.cs;
|
||||
bmin[0] = header->bmin[0] + header->minx*cs;
|
||||
bmin[1] = header->bmin[1];
|
||||
bmin[2] = header->bmin[2] + header->miny*cs;
|
||||
bmax[0] = header->bmin[0] + (header->maxx+1)*cs;
|
||||
bmax[1] = header->bmax[1];
|
||||
bmax[2] = header->bmin[2] + (header->maxy+1)*cs;
|
||||
}
|
||||
|
||||
void dtTileCache::getObstacleBounds(const struct dtTileCacheObstacle* ob, float* bmin, float* bmax) const
|
||||
{
|
||||
if (ob->type == DT_OBSTACLE_CYLINDER)
|
||||
{
|
||||
const dtObstacleCylinder &cl = ob->cylinder;
|
||||
|
||||
bmin[0] = cl.pos[0] - cl.radius;
|
||||
bmin[1] = cl.pos[1];
|
||||
bmin[2] = cl.pos[2] - cl.radius;
|
||||
bmax[0] = cl.pos[0] + cl.radius;
|
||||
bmax[1] = cl.pos[1] + cl.height;
|
||||
bmax[2] = cl.pos[2] + cl.radius;
|
||||
}
|
||||
else if (ob->type == DT_OBSTACLE_BOX)
|
||||
{
|
||||
dtVcopy(bmin, ob->box.bmin);
|
||||
dtVcopy(bmax, ob->box.bmax);
|
||||
}
|
||||
}
|
||||
2196
libs/recast/detour_tile_cache/src/DetourTileCacheBuilder.cpp
Normal file
2196
libs/recast/detour_tile_cache/src/DetourTileCacheBuilder.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1200
libs/recast/recast/include/Recast.h
Normal file
1200
libs/recast/recast/include/Recast.h
Normal file
File diff suppressed because it is too large
Load Diff
146
libs/recast/recast/include/RecastAlloc.h
Normal file
146
libs/recast/recast/include/RecastAlloc.h
Normal file
@ -0,0 +1,146 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef RECASTALLOC_H
|
||||
#define RECASTALLOC_H
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
/// Provides hint values to the memory allocator on how long the
|
||||
/// memory is expected to be used.
|
||||
enum rcAllocHint
|
||||
{
|
||||
RC_ALLOC_PERM, ///< Memory will persist after a function call.
|
||||
RC_ALLOC_TEMP ///< Memory used temporarily within a function.
|
||||
};
|
||||
|
||||
/// A memory allocation function.
|
||||
// @param[in] size The size, in bytes of memory, to allocate.
|
||||
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
|
||||
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see rcAllocSetCustom
|
||||
typedef void* (rcAllocFunc)(size_t size, rcAllocHint hint);
|
||||
|
||||
/// A memory deallocation function.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc.
|
||||
/// @see rcAllocSetCustom
|
||||
typedef void (rcFreeFunc)(void* ptr);
|
||||
|
||||
/// Sets the base custom allocation functions to be used by Recast.
|
||||
/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
|
||||
/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
|
||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
|
||||
|
||||
/// Allocates a memory block.
|
||||
/// @param[in] size The size, in bytes of memory, to allocate.
|
||||
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
|
||||
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
|
||||
/// @see rcFree
|
||||
void* rcAlloc(size_t size, rcAllocHint hint);
|
||||
|
||||
/// Deallocates a memory block.
|
||||
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
|
||||
/// @see rcAlloc
|
||||
void rcFree(void* ptr);
|
||||
|
||||
|
||||
/// A simple dynamic array of integers.
|
||||
class rcIntArray
|
||||
{
|
||||
int* m_data;
|
||||
int m_size, m_cap;
|
||||
|
||||
void doResize(int n);
|
||||
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
rcIntArray(const rcIntArray&);
|
||||
rcIntArray& operator=(const rcIntArray&);
|
||||
|
||||
public:
|
||||
/// Constructs an instance with an initial array size of zero.
|
||||
rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
|
||||
|
||||
/// Constructs an instance initialized to the specified size.
|
||||
/// @param[in] n The initial size of the integer array.
|
||||
rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
|
||||
~rcIntArray() { rcFree(m_data); }
|
||||
|
||||
/// Specifies the new size of the integer array.
|
||||
/// @param[in] n The new size of the integer array.
|
||||
void resize(int n)
|
||||
{
|
||||
if (n > m_cap)
|
||||
doResize(n);
|
||||
|
||||
m_size = n;
|
||||
}
|
||||
|
||||
/// Push the specified integer onto the end of the array and increases the size by one.
|
||||
/// @param[in] item The new value.
|
||||
void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
|
||||
|
||||
/// Returns the value at the end of the array and reduces the size by one.
|
||||
/// @return The value at the end of the array.
|
||||
int pop()
|
||||
{
|
||||
if (m_size > 0)
|
||||
m_size--;
|
||||
|
||||
return m_data[m_size];
|
||||
}
|
||||
|
||||
/// The value at the specified array index.
|
||||
/// @warning Does not provide overflow protection.
|
||||
/// @param[in] i The index of the value.
|
||||
const int& operator[](int i) const { return m_data[i]; }
|
||||
|
||||
/// The value at the specified array index.
|
||||
/// @warning Does not provide overflow protection.
|
||||
/// @param[in] i The index of the value.
|
||||
int& operator[](int i) { return m_data[i]; }
|
||||
|
||||
/// The current size of the integer array.
|
||||
int size() const { return m_size; }
|
||||
};
|
||||
|
||||
/// A simple helper class used to delete an array when it goes out of scope.
|
||||
/// @note This class is rarely if ever used by the end user.
|
||||
template<class T> class rcScopedDelete
|
||||
{
|
||||
T* ptr;
|
||||
public:
|
||||
|
||||
/// Constructs an instance with a null pointer.
|
||||
inline rcScopedDelete() : ptr(0) {}
|
||||
|
||||
/// Constructs an instance with the specified pointer.
|
||||
/// @param[in] p An pointer to an allocated array.
|
||||
inline rcScopedDelete(T* p) : ptr(p) {}
|
||||
inline ~rcScopedDelete() { rcFree(ptr); }
|
||||
|
||||
/// The root array pointer.
|
||||
/// @return The root array pointer.
|
||||
inline operator T*() { return ptr; }
|
||||
|
||||
private:
|
||||
// Explicitly disabled copy constructor and copy assignment operator.
|
||||
rcScopedDelete(const rcScopedDelete&);
|
||||
rcScopedDelete& operator=(const rcScopedDelete&);
|
||||
};
|
||||
|
||||
#endif
|
||||
56
libs/recast/recast/include/RecastAssert.h
Normal file
56
libs/recast/recast/include/RecastAssert.h
Normal file
@ -0,0 +1,56 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#ifndef RECASTASSERT_H
|
||||
#define RECASTASSERT_H
|
||||
|
||||
// Note: This header file's only purpose is to include define assert.
|
||||
// Feel free to change the file and include your own implementation instead.
|
||||
|
||||
#ifdef NDEBUG
|
||||
|
||||
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
|
||||
# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
|
||||
|
||||
#else
|
||||
|
||||
/// An assertion failure function.
|
||||
// @param[in] expression asserted expression.
|
||||
// @param[in] file Filename of the failed assertion.
|
||||
// @param[in] line Line number of the failed assertion.
|
||||
/// @see rcAssertFailSetCustom
|
||||
typedef void (rcAssertFailFunc)(const char* expression, const char* file, int line);
|
||||
|
||||
/// Sets the base custom assertion failure function to be used by Recast.
|
||||
/// @param[in] assertFailFunc The function to be used in case of failure of #dtAssert
|
||||
void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc);
|
||||
|
||||
/// Gets the base custom assertion failure function to be used by Recast.
|
||||
rcAssertFailFunc* rcAssertFailGetCustom();
|
||||
|
||||
# include <assert.h>
|
||||
# define rcAssert(expression) \
|
||||
{ \
|
||||
rcAssertFailFunc* failFunc = rcAssertFailGetCustom(); \
|
||||
if(failFunc == NULL) { assert(expression); } \
|
||||
else if(!(expression)) { (*failFunc)(#expression, __FILE__, __LINE__); } \
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#endif // RECASTASSERT_H
|
||||
504
libs/recast/recast/src/Recast.cpp
Normal file
504
libs/recast/recast/src/Recast.cpp
Normal file
@ -0,0 +1,504 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
#include <new>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
float rcSqrt(float x)
|
||||
{
|
||||
return sqrtf(x);
|
||||
}
|
||||
|
||||
/// @class rcContext
|
||||
/// @par
|
||||
///
|
||||
/// This class does not provide logging or timer functionality on its
|
||||
/// own. Both must be provided by a concrete implementation
|
||||
/// by overriding the protected member functions. Also, this class does not
|
||||
/// provide an interface for extracting log messages. (Only adding them.)
|
||||
/// So concrete implementations must provide one.
|
||||
///
|
||||
/// If no logging or timers are required, just pass an instance of this
|
||||
/// class through the Recast build process.
|
||||
///
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Example:
|
||||
/// @code
|
||||
/// // Where ctx is an instance of rcContext and filepath is a char array.
|
||||
/// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath);
|
||||
/// @endcode
|
||||
void rcContext::log(const rcLogCategory category, const char* format, ...)
|
||||
{
|
||||
if (!m_logEnabled)
|
||||
return;
|
||||
static const int MSG_SIZE = 512;
|
||||
char msg[MSG_SIZE];
|
||||
va_list ap;
|
||||
va_start(ap, format);
|
||||
int len = vsnprintf(msg, MSG_SIZE, format, ap);
|
||||
if (len >= MSG_SIZE)
|
||||
{
|
||||
len = MSG_SIZE-1;
|
||||
msg[MSG_SIZE-1] = '\0';
|
||||
}
|
||||
va_end(ap);
|
||||
doLog(category, msg, len);
|
||||
}
|
||||
|
||||
rcHeightfield* rcAllocHeightfield()
|
||||
{
|
||||
return new (rcAlloc(sizeof(rcHeightfield), RC_ALLOC_PERM)) rcHeightfield;
|
||||
}
|
||||
|
||||
rcHeightfield::rcHeightfield()
|
||||
: width()
|
||||
, height()
|
||||
, bmin()
|
||||
, bmax()
|
||||
, cs()
|
||||
, ch()
|
||||
, spans()
|
||||
, pools()
|
||||
, freelist()
|
||||
{
|
||||
}
|
||||
|
||||
rcHeightfield::~rcHeightfield()
|
||||
{
|
||||
// Delete span array.
|
||||
rcFree(spans);
|
||||
// Delete span pools.
|
||||
while (pools)
|
||||
{
|
||||
rcSpanPool* next = pools->next;
|
||||
rcFree(pools);
|
||||
pools = next;
|
||||
}
|
||||
}
|
||||
|
||||
void rcFreeHeightField(rcHeightfield* hf)
|
||||
{
|
||||
if (!hf) return;
|
||||
hf->~rcHeightfield();
|
||||
rcFree(hf);
|
||||
}
|
||||
|
||||
rcCompactHeightfield* rcAllocCompactHeightfield()
|
||||
{
|
||||
rcCompactHeightfield* chf = (rcCompactHeightfield*)rcAlloc(sizeof(rcCompactHeightfield), RC_ALLOC_PERM);
|
||||
memset(chf, 0, sizeof(rcCompactHeightfield));
|
||||
return chf;
|
||||
}
|
||||
|
||||
void rcFreeCompactHeightfield(rcCompactHeightfield* chf)
|
||||
{
|
||||
if (!chf) return;
|
||||
rcFree(chf->cells);
|
||||
rcFree(chf->spans);
|
||||
rcFree(chf->dist);
|
||||
rcFree(chf->areas);
|
||||
rcFree(chf);
|
||||
}
|
||||
|
||||
rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet()
|
||||
{
|
||||
rcHeightfieldLayerSet* lset = (rcHeightfieldLayerSet*)rcAlloc(sizeof(rcHeightfieldLayerSet), RC_ALLOC_PERM);
|
||||
memset(lset, 0, sizeof(rcHeightfieldLayerSet));
|
||||
return lset;
|
||||
}
|
||||
|
||||
void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* lset)
|
||||
{
|
||||
if (!lset) return;
|
||||
for (int i = 0; i < lset->nlayers; ++i)
|
||||
{
|
||||
rcFree(lset->layers[i].heights);
|
||||
rcFree(lset->layers[i].areas);
|
||||
rcFree(lset->layers[i].cons);
|
||||
}
|
||||
rcFree(lset->layers);
|
||||
rcFree(lset);
|
||||
}
|
||||
|
||||
|
||||
rcContourSet* rcAllocContourSet()
|
||||
{
|
||||
rcContourSet* cset = (rcContourSet*)rcAlloc(sizeof(rcContourSet), RC_ALLOC_PERM);
|
||||
memset(cset, 0, sizeof(rcContourSet));
|
||||
return cset;
|
||||
}
|
||||
|
||||
void rcFreeContourSet(rcContourSet* cset)
|
||||
{
|
||||
if (!cset) return;
|
||||
for (int i = 0; i < cset->nconts; ++i)
|
||||
{
|
||||
rcFree(cset->conts[i].verts);
|
||||
rcFree(cset->conts[i].rverts);
|
||||
}
|
||||
rcFree(cset->conts);
|
||||
rcFree(cset);
|
||||
}
|
||||
|
||||
rcPolyMesh* rcAllocPolyMesh()
|
||||
{
|
||||
rcPolyMesh* pmesh = (rcPolyMesh*)rcAlloc(sizeof(rcPolyMesh), RC_ALLOC_PERM);
|
||||
memset(pmesh, 0, sizeof(rcPolyMesh));
|
||||
return pmesh;
|
||||
}
|
||||
|
||||
void rcFreePolyMesh(rcPolyMesh* pmesh)
|
||||
{
|
||||
if (!pmesh) return;
|
||||
rcFree(pmesh->verts);
|
||||
rcFree(pmesh->polys);
|
||||
rcFree(pmesh->regs);
|
||||
rcFree(pmesh->flags);
|
||||
rcFree(pmesh->areas);
|
||||
rcFree(pmesh);
|
||||
}
|
||||
|
||||
rcPolyMeshDetail* rcAllocPolyMeshDetail()
|
||||
{
|
||||
rcPolyMeshDetail* dmesh = (rcPolyMeshDetail*)rcAlloc(sizeof(rcPolyMeshDetail), RC_ALLOC_PERM);
|
||||
memset(dmesh, 0, sizeof(rcPolyMeshDetail));
|
||||
return dmesh;
|
||||
}
|
||||
|
||||
void rcFreePolyMeshDetail(rcPolyMeshDetail* dmesh)
|
||||
{
|
||||
if (!dmesh) return;
|
||||
rcFree(dmesh->meshes);
|
||||
rcFree(dmesh->verts);
|
||||
rcFree(dmesh->tris);
|
||||
rcFree(dmesh);
|
||||
}
|
||||
|
||||
void rcCalcBounds(const float* verts, int nv, float* bmin, float* bmax)
|
||||
{
|
||||
// Calculate bounding box.
|
||||
rcVcopy(bmin, verts);
|
||||
rcVcopy(bmax, verts);
|
||||
for (int i = 1; i < nv; ++i)
|
||||
{
|
||||
const float* v = &verts[i*3];
|
||||
rcVmin(bmin, v);
|
||||
rcVmax(bmax, v);
|
||||
}
|
||||
}
|
||||
|
||||
void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int* h)
|
||||
{
|
||||
*w = (int)((bmax[0] - bmin[0])/cs+0.5f);
|
||||
*h = (int)((bmax[2] - bmin[2])/cs+0.5f);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocHeightfield, rcHeightfield
|
||||
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
|
||||
const float* bmin, const float* bmax,
|
||||
float cs, float ch)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
|
||||
hf.width = width;
|
||||
hf.height = height;
|
||||
rcVcopy(hf.bmin, bmin);
|
||||
rcVcopy(hf.bmax, bmax);
|
||||
hf.cs = cs;
|
||||
hf.ch = ch;
|
||||
hf.spans = (rcSpan**)rcAlloc(sizeof(rcSpan*)*hf.width*hf.height, RC_ALLOC_PERM);
|
||||
if (!hf.spans)
|
||||
return false;
|
||||
memset(hf.spans, 0, sizeof(rcSpan*)*hf.width*hf.height);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void calcTriNormal(const float* v0, const float* v1, const float* v2, float* norm)
|
||||
{
|
||||
float e0[3], e1[3];
|
||||
rcVsub(e0, v1, v0);
|
||||
rcVsub(e1, v2, v0);
|
||||
rcVcross(norm, e0, e1);
|
||||
rcVnormalize(norm);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Only sets the area id's for the walkable triangles. Does not alter the
|
||||
/// area id's for unwalkable triangles.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
||||
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
|
||||
const float* verts, int nv,
|
||||
const int* tris, int nt,
|
||||
unsigned char* areas)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
rcIgnoreUnused(nv);
|
||||
|
||||
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
|
||||
|
||||
float norm[3];
|
||||
|
||||
for (int i = 0; i < nt; ++i)
|
||||
{
|
||||
const int* tri = &tris[i*3];
|
||||
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
|
||||
// Check if the face is walkable.
|
||||
if (norm[1] > walkableThr)
|
||||
areas[i] = RC_WALKABLE_AREA;
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Only sets the area id's for the unwalkable triangles. Does not alter the
|
||||
/// area id's for walkable triangles.
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
|
||||
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
|
||||
const float* verts, int /*nv*/,
|
||||
const int* tris, int nt,
|
||||
unsigned char* areas)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
|
||||
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
|
||||
|
||||
float norm[3];
|
||||
|
||||
for (int i = 0; i < nt; ++i)
|
||||
{
|
||||
const int* tri = &tris[i*3];
|
||||
calcTriNormal(&verts[tri[0]*3], &verts[tri[1]*3], &verts[tri[2]*3], norm);
|
||||
// Check if the face is walkable.
|
||||
if (norm[1] <= walkableThr)
|
||||
areas[i] = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
|
||||
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf)
|
||||
{
|
||||
rcIgnoreUnused(ctx);
|
||||
|
||||
const int w = hf.width;
|
||||
const int h = hf.height;
|
||||
int spanCount = 0;
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
for (rcSpan* s = hf.spans[x + y*w]; s; s = s->next)
|
||||
{
|
||||
if (s->area != RC_NULL_AREA)
|
||||
spanCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return spanCount;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// This is just the beginning of the process of fully building a compact heightfield.
|
||||
/// Various filters may be applied, then the distance field and regions built.
|
||||
/// E.g: #rcBuildDistanceField and #rcBuildRegions
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig
|
||||
bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& hf, rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
|
||||
|
||||
const int w = hf.width;
|
||||
const int h = hf.height;
|
||||
const int spanCount = rcGetHeightFieldSpanCount(ctx, hf);
|
||||
|
||||
// Fill in header.
|
||||
chf.width = w;
|
||||
chf.height = h;
|
||||
chf.spanCount = spanCount;
|
||||
chf.walkableHeight = walkableHeight;
|
||||
chf.walkableClimb = walkableClimb;
|
||||
chf.maxRegions = 0;
|
||||
rcVcopy(chf.bmin, hf.bmin);
|
||||
rcVcopy(chf.bmax, hf.bmax);
|
||||
chf.bmax[1] += walkableHeight*hf.ch;
|
||||
chf.cs = hf.cs;
|
||||
chf.ch = hf.ch;
|
||||
chf.cells = (rcCompactCell*)rcAlloc(sizeof(rcCompactCell)*w*h, RC_ALLOC_PERM);
|
||||
if (!chf.cells)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.cells' (%d)", w*h);
|
||||
return false;
|
||||
}
|
||||
memset(chf.cells, 0, sizeof(rcCompactCell)*w*h);
|
||||
chf.spans = (rcCompactSpan*)rcAlloc(sizeof(rcCompactSpan)*spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.spans)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.spans' (%d)", spanCount);
|
||||
return false;
|
||||
}
|
||||
memset(chf.spans, 0, sizeof(rcCompactSpan)*spanCount);
|
||||
chf.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*spanCount, RC_ALLOC_PERM);
|
||||
if (!chf.areas)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Out of memory 'chf.areas' (%d)", spanCount);
|
||||
return false;
|
||||
}
|
||||
memset(chf.areas, RC_NULL_AREA, sizeof(unsigned char)*spanCount);
|
||||
|
||||
const int MAX_HEIGHT = 0xffff;
|
||||
|
||||
// Fill in cells and spans.
|
||||
int idx = 0;
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcSpan* s = hf.spans[x + y*w];
|
||||
// If there are no spans at this cell, just leave the data to index=0, count=0.
|
||||
if (!s) continue;
|
||||
rcCompactCell& c = chf.cells[x+y*w];
|
||||
c.index = idx;
|
||||
c.count = 0;
|
||||
while (s)
|
||||
{
|
||||
if (s->area != RC_NULL_AREA)
|
||||
{
|
||||
const int bot = (int)s->smax;
|
||||
const int top = s->next ? (int)s->next->smin : MAX_HEIGHT;
|
||||
chf.spans[idx].y = (unsigned short)rcClamp(bot, 0, 0xffff);
|
||||
chf.spans[idx].h = (unsigned char)rcClamp(top - bot, 0, 0xff);
|
||||
chf.areas[idx] = s->area;
|
||||
idx++;
|
||||
c.count++;
|
||||
}
|
||||
s = s->next;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Find neighbour connections.
|
||||
const int MAX_LAYERS = RC_NOT_CONNECTED-1;
|
||||
int tooHighNeighbour = 0;
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
rcSetCon(s, dir, RC_NOT_CONNECTED);
|
||||
const int nx = x + rcGetDirOffsetX(dir);
|
||||
const int ny = y + rcGetDirOffsetY(dir);
|
||||
// First check that the neighbour cell is in bounds.
|
||||
if (nx < 0 || ny < 0 || nx >= w || ny >= h)
|
||||
continue;
|
||||
|
||||
// Iterate over all neighbour spans and check if any of the is
|
||||
// accessible from current cell.
|
||||
const rcCompactCell& nc = chf.cells[nx+ny*w];
|
||||
for (int k = (int)nc.index, nk = (int)(nc.index+nc.count); k < nk; ++k)
|
||||
{
|
||||
const rcCompactSpan& ns = chf.spans[k];
|
||||
const int bot = rcMax(s.y, ns.y);
|
||||
const int top = rcMin(s.y+s.h, ns.y+ns.h);
|
||||
|
||||
// Check that the gap between the spans is walkable,
|
||||
// and that the climb height between the gaps is not too high.
|
||||
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
|
||||
{
|
||||
// Mark direction as walkable.
|
||||
const int lidx = k - (int)nc.index;
|
||||
if (lidx < 0 || lidx > MAX_LAYERS)
|
||||
{
|
||||
tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
|
||||
continue;
|
||||
}
|
||||
rcSetCon(s, dir, lidx);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (tooHighNeighbour > MAX_LAYERS)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
|
||||
tooHighNeighbour, MAX_LAYERS);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
static int getHeightfieldMemoryUsage(const rcHeightfield& hf)
|
||||
{
|
||||
int size = 0;
|
||||
size += sizeof(hf);
|
||||
size += hf.width * hf.height * sizeof(rcSpan*);
|
||||
|
||||
rcSpanPool* pool = hf.pools;
|
||||
while (pool)
|
||||
{
|
||||
size += (sizeof(rcSpanPool) - sizeof(rcSpan)) + sizeof(rcSpan)*RC_SPANS_PER_POOL;
|
||||
pool = pool->next;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
|
||||
{
|
||||
int size = 0;
|
||||
size += sizeof(rcCompactHeightfield);
|
||||
size += sizeof(rcCompactSpan) * chf.spanCount;
|
||||
size += sizeof(rcCompactCell) * chf.width * chf.height;
|
||||
return size;
|
||||
}
|
||||
*/
|
||||
86
libs/recast/recast/src/RecastAlloc.cpp
Normal file
86
libs/recast/recast/src/RecastAlloc.cpp
Normal file
@ -0,0 +1,86 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
static void *rcAllocDefault(size_t size, rcAllocHint)
|
||||
{
|
||||
return malloc(size);
|
||||
}
|
||||
|
||||
static void rcFreeDefault(void *ptr)
|
||||
{
|
||||
free(ptr);
|
||||
}
|
||||
|
||||
static rcAllocFunc* sRecastAllocFunc = rcAllocDefault;
|
||||
static rcFreeFunc* sRecastFreeFunc = rcFreeDefault;
|
||||
|
||||
/// @see rcAlloc, rcFree
|
||||
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
|
||||
{
|
||||
sRecastAllocFunc = allocFunc ? allocFunc : rcAllocDefault;
|
||||
sRecastFreeFunc = freeFunc ? freeFunc : rcFreeDefault;
|
||||
}
|
||||
|
||||
/// @see rcAllocSetCustom
|
||||
void* rcAlloc(size_t size, rcAllocHint hint)
|
||||
{
|
||||
return sRecastAllocFunc(size, hint);
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// @warning This function leaves the value of @p ptr unchanged. So it still
|
||||
/// points to the same (now invalid) location, and not to null.
|
||||
///
|
||||
/// @see rcAllocSetCustom
|
||||
void rcFree(void* ptr)
|
||||
{
|
||||
if (ptr)
|
||||
sRecastFreeFunc(ptr);
|
||||
}
|
||||
|
||||
/// @class rcIntArray
|
||||
///
|
||||
/// While it is possible to pre-allocate a specific array size during
|
||||
/// construction or by using the #resize method, certain methods will
|
||||
/// automatically resize the array as needed.
|
||||
///
|
||||
/// @warning The array memory is not initialized to zero when the size is
|
||||
/// manually set during construction or when using #resize.
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Using this method ensures the array is at least large enough to hold
|
||||
/// the specified number of elements. This can improve performance by
|
||||
/// avoiding auto-resizing during use.
|
||||
void rcIntArray::doResize(int n)
|
||||
{
|
||||
if (!m_cap) m_cap = n;
|
||||
while (m_cap < n) m_cap *= 2;
|
||||
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
|
||||
rcAssert(newData);
|
||||
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
|
||||
rcFree(m_data);
|
||||
m_data = newData;
|
||||
}
|
||||
|
||||
591
libs/recast/recast/src/RecastArea.cpp
Normal file
591
libs/recast/recast/src/RecastArea.cpp
Normal file
@ -0,0 +1,591 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Basically, any spans that are closer to a boundary or obstruction than the specified radius
|
||||
/// are marked as unwalkable.
|
||||
///
|
||||
/// This method is usually called immediately after the heightfield has been built.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius
|
||||
bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_ERODE_AREA);
|
||||
|
||||
unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
|
||||
if (!dist)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d).", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Init distance.
|
||||
memset(dist, 0xff, sizeof(unsigned char)*chf.spanCount);
|
||||
|
||||
// Mark boundary cells.
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
{
|
||||
dist[i] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
int nc = 0;
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int nx = x + rcGetDirOffsetX(dir);
|
||||
const int ny = y + rcGetDirOffsetY(dir);
|
||||
const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir);
|
||||
if (chf.areas[nidx] != RC_NULL_AREA)
|
||||
{
|
||||
nc++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// At least one missing neighbour.
|
||||
if (nc != 4)
|
||||
dist[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
unsigned char nd;
|
||||
|
||||
// Pass 1
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
|
||||
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
|
||||
{
|
||||
// (-1,0)
|
||||
const int ax = x + rcGetDirOffsetX(0);
|
||||
const int ay = y + rcGetDirOffsetY(0);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
|
||||
// (-1,-1)
|
||||
if (rcGetCon(as, 3) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int aax = ax + rcGetDirOffsetX(3);
|
||||
const int aay = ay + rcGetDirOffsetY(3);
|
||||
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
|
||||
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
}
|
||||
}
|
||||
if (rcGetCon(s, 3) != RC_NOT_CONNECTED)
|
||||
{
|
||||
// (0,-1)
|
||||
const int ax = x + rcGetDirOffsetX(3);
|
||||
const int ay = y + rcGetDirOffsetY(3);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
|
||||
// (1,-1)
|
||||
if (rcGetCon(as, 2) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int aax = ax + rcGetDirOffsetX(2);
|
||||
const int aay = ay + rcGetDirOffsetY(2);
|
||||
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
|
||||
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Pass 2
|
||||
for (int y = h-1; y >= 0; --y)
|
||||
{
|
||||
for (int x = w-1; x >= 0; --x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
|
||||
if (rcGetCon(s, 2) != RC_NOT_CONNECTED)
|
||||
{
|
||||
// (1,0)
|
||||
const int ax = x + rcGetDirOffsetX(2);
|
||||
const int ay = y + rcGetDirOffsetY(2);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
|
||||
// (1,1)
|
||||
if (rcGetCon(as, 1) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int aax = ax + rcGetDirOffsetX(1);
|
||||
const int aay = ay + rcGetDirOffsetY(1);
|
||||
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
|
||||
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
}
|
||||
}
|
||||
if (rcGetCon(s, 1) != RC_NOT_CONNECTED)
|
||||
{
|
||||
// (0,1)
|
||||
const int ax = x + rcGetDirOffsetX(1);
|
||||
const int ay = y + rcGetDirOffsetY(1);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
nd = (unsigned char)rcMin((int)dist[ai]+2, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
|
||||
// (-1,1)
|
||||
if (rcGetCon(as, 0) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int aax = ax + rcGetDirOffsetX(0);
|
||||
const int aay = ay + rcGetDirOffsetY(0);
|
||||
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
|
||||
nd = (unsigned char)rcMin((int)dist[aai]+3, 255);
|
||||
if (nd < dist[i])
|
||||
dist[i] = nd;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const unsigned char thr = (unsigned char)(radius*2);
|
||||
for (int i = 0; i < chf.spanCount; ++i)
|
||||
if (dist[i] < thr)
|
||||
chf.areas[i] = RC_NULL_AREA;
|
||||
|
||||
rcFree(dist);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void insertSort(unsigned char* a, const int n)
|
||||
{
|
||||
int i, j;
|
||||
for (i = 1; i < n; i++)
|
||||
{
|
||||
const unsigned char value = a[i];
|
||||
for (j = i - 1; j >= 0 && a[j] > value; j--)
|
||||
a[j+1] = a[j];
|
||||
a[j+1] = value;
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// This filter is usually applied after applying area id's using functions
|
||||
/// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea.
|
||||
///
|
||||
/// @see rcCompactHeightfield
|
||||
bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_MEDIAN_AREA);
|
||||
|
||||
unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
|
||||
if (!areas)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d).", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
|
||||
// Init distance.
|
||||
memset(areas, 0xff, sizeof(unsigned char)*chf.spanCount);
|
||||
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
{
|
||||
areas[i] = chf.areas[i];
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned char nei[9];
|
||||
for (int j = 0; j < 9; ++j)
|
||||
nei[j] = chf.areas[i];
|
||||
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(dir);
|
||||
const int ay = y + rcGetDirOffsetY(dir);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
||||
if (chf.areas[ai] != RC_NULL_AREA)
|
||||
nei[dir*2+0] = chf.areas[ai];
|
||||
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
const int dir2 = (dir+1) & 0x3;
|
||||
if (rcGetCon(as, dir2) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax2 = ax + rcGetDirOffsetX(dir2);
|
||||
const int ay2 = ay + rcGetDirOffsetY(dir2);
|
||||
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
|
||||
if (chf.areas[ai2] != RC_NULL_AREA)
|
||||
nei[dir*2+1] = chf.areas[ai2];
|
||||
}
|
||||
}
|
||||
}
|
||||
insertSort(nei, 9);
|
||||
areas[i] = nei[4];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount);
|
||||
|
||||
rcFree(areas);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The value of spacial parameters are in world units.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
|
||||
void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId,
|
||||
rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_MARK_BOX_AREA);
|
||||
|
||||
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
|
||||
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
|
||||
int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
|
||||
int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
|
||||
int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
|
||||
int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
|
||||
|
||||
if (maxx < 0) return;
|
||||
if (minx >= chf.width) return;
|
||||
if (maxz < 0) return;
|
||||
if (minz >= chf.height) return;
|
||||
|
||||
if (minx < 0) minx = 0;
|
||||
if (maxx >= chf.width) maxx = chf.width-1;
|
||||
if (minz < 0) minz = 0;
|
||||
if (maxz >= chf.height) maxz = chf.height-1;
|
||||
|
||||
for (int z = minz; z <= maxz; ++z)
|
||||
{
|
||||
for (int x = minx; x <= maxx; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+z*chf.width];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
if ((int)s.y >= miny && (int)s.y <= maxy)
|
||||
{
|
||||
if (chf.areas[i] != RC_NULL_AREA)
|
||||
chf.areas[i] = areaId;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static int pointInPoly(int nvert, const float* verts, const float* p)
|
||||
{
|
||||
int i, j, c = 0;
|
||||
for (i = 0, j = nvert-1; i < nvert; j = i++)
|
||||
{
|
||||
const float* vi = &verts[i*3];
|
||||
const float* vj = &verts[j*3];
|
||||
if (((vi[2] > p[2]) != (vj[2] > p[2])) &&
|
||||
(p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) )
|
||||
c = !c;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The value of spacial parameters are in world units.
|
||||
///
|
||||
/// The y-values of the polygon vertices are ignored. So the polygon is effectively
|
||||
/// projected onto the xz-plane at @p hmin, then extruded to @p hmax.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
|
||||
void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
|
||||
const float hmin, const float hmax, unsigned char areaId,
|
||||
rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA);
|
||||
|
||||
float bmin[3], bmax[3];
|
||||
rcVcopy(bmin, verts);
|
||||
rcVcopy(bmax, verts);
|
||||
for (int i = 1; i < nverts; ++i)
|
||||
{
|
||||
rcVmin(bmin, &verts[i*3]);
|
||||
rcVmax(bmax, &verts[i*3]);
|
||||
}
|
||||
bmin[1] = hmin;
|
||||
bmax[1] = hmax;
|
||||
|
||||
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
|
||||
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
|
||||
int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
|
||||
int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
|
||||
int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
|
||||
int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
|
||||
|
||||
if (maxx < 0) return;
|
||||
if (minx >= chf.width) return;
|
||||
if (maxz < 0) return;
|
||||
if (minz >= chf.height) return;
|
||||
|
||||
if (minx < 0) minx = 0;
|
||||
if (maxx >= chf.width) maxx = chf.width-1;
|
||||
if (minz < 0) minz = 0;
|
||||
if (maxz >= chf.height) maxz = chf.height-1;
|
||||
|
||||
|
||||
// TODO: Optimize.
|
||||
for (int z = minz; z <= maxz; ++z)
|
||||
{
|
||||
for (int x = minx; x <= maxx; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+z*chf.width];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
continue;
|
||||
if ((int)s.y >= miny && (int)s.y <= maxy)
|
||||
{
|
||||
float p[3];
|
||||
p[0] = chf.bmin[0] + (x+0.5f)*chf.cs;
|
||||
p[1] = 0;
|
||||
p[2] = chf.bmin[2] + (z+0.5f)*chf.cs;
|
||||
|
||||
if (pointInPoly(nverts, verts, p))
|
||||
{
|
||||
chf.areas[i] = areaId;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
|
||||
float* outVerts, const int maxOutVerts)
|
||||
{
|
||||
const float MITER_LIMIT = 1.20f;
|
||||
|
||||
int n = 0;
|
||||
|
||||
for (int i = 0; i < nverts; i++)
|
||||
{
|
||||
const int a = (i+nverts-1) % nverts;
|
||||
const int b = i;
|
||||
const int c = (i+1) % nverts;
|
||||
const float* va = &verts[a*3];
|
||||
const float* vb = &verts[b*3];
|
||||
const float* vc = &verts[c*3];
|
||||
float dx0 = vb[0] - va[0];
|
||||
float dy0 = vb[2] - va[2];
|
||||
float d0 = dx0*dx0 + dy0*dy0;
|
||||
if (d0 > 1e-6f)
|
||||
{
|
||||
d0 = 1.0f/rcSqrt(d0);
|
||||
dx0 *= d0;
|
||||
dy0 *= d0;
|
||||
}
|
||||
float dx1 = vc[0] - vb[0];
|
||||
float dy1 = vc[2] - vb[2];
|
||||
float d1 = dx1*dx1 + dy1*dy1;
|
||||
if (d1 > 1e-6f)
|
||||
{
|
||||
d1 = 1.0f/rcSqrt(d1);
|
||||
dx1 *= d1;
|
||||
dy1 *= d1;
|
||||
}
|
||||
const float dlx0 = -dy0;
|
||||
const float dly0 = dx0;
|
||||
const float dlx1 = -dy1;
|
||||
const float dly1 = dx1;
|
||||
float cross = dx1*dy0 - dx0*dy1;
|
||||
float dmx = (dlx0 + dlx1) * 0.5f;
|
||||
float dmy = (dly0 + dly1) * 0.5f;
|
||||
float dmr2 = dmx*dmx + dmy*dmy;
|
||||
bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f;
|
||||
if (dmr2 > 1e-6f)
|
||||
{
|
||||
const float scale = 1.0f / dmr2;
|
||||
dmx *= scale;
|
||||
dmy *= scale;
|
||||
}
|
||||
|
||||
if (bevel && cross < 0.0f)
|
||||
{
|
||||
if (n+2 >= maxOutVerts)
|
||||
return 0;
|
||||
float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f;
|
||||
outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset;
|
||||
outVerts[n*3+1] = vb[1];
|
||||
outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset;
|
||||
n++;
|
||||
outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset;
|
||||
outVerts[n*3+1] = vb[1];
|
||||
outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset;
|
||||
n++;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (n+1 >= maxOutVerts)
|
||||
return 0;
|
||||
outVerts[n*3+0] = vb[0] - dmx*offset;
|
||||
outVerts[n*3+1] = vb[1];
|
||||
outVerts[n*3+2] = vb[2] - dmy*offset;
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The value of spacial parameters are in world units.
|
||||
///
|
||||
/// @see rcCompactHeightfield, rcMedianFilterWalkableArea
|
||||
void rcMarkCylinderArea(rcContext* ctx, const float* pos,
|
||||
const float r, const float h, unsigned char areaId,
|
||||
rcCompactHeightfield& chf)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_MARK_CYLINDER_AREA);
|
||||
|
||||
float bmin[3], bmax[3];
|
||||
bmin[0] = pos[0] - r;
|
||||
bmin[1] = pos[1];
|
||||
bmin[2] = pos[2] - r;
|
||||
bmax[0] = pos[0] + r;
|
||||
bmax[1] = pos[1] + h;
|
||||
bmax[2] = pos[2] + r;
|
||||
const float r2 = r*r;
|
||||
|
||||
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
|
||||
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
|
||||
int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs);
|
||||
int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs);
|
||||
int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch);
|
||||
int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs);
|
||||
|
||||
if (maxx < 0) return;
|
||||
if (minx >= chf.width) return;
|
||||
if (maxz < 0) return;
|
||||
if (minz >= chf.height) return;
|
||||
|
||||
if (minx < 0) minx = 0;
|
||||
if (maxx >= chf.width) maxx = chf.width-1;
|
||||
if (minz < 0) minz = 0;
|
||||
if (maxz >= chf.height) maxz = chf.height-1;
|
||||
|
||||
|
||||
for (int z = minz; z <= maxz; ++z)
|
||||
{
|
||||
for (int x = minx; x <= maxx; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+z*chf.width];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
rcCompactSpan& s = chf.spans[i];
|
||||
|
||||
if (chf.areas[i] == RC_NULL_AREA)
|
||||
continue;
|
||||
|
||||
if ((int)s.y >= miny && (int)s.y <= maxy)
|
||||
{
|
||||
const float sx = chf.bmin[0] + (x+0.5f)*chf.cs;
|
||||
const float sz = chf.bmin[2] + (z+0.5f)*chf.cs;
|
||||
const float dx = sx - pos[0];
|
||||
const float dz = sz - pos[2];
|
||||
|
||||
if (dx*dx + dz*dz < r2)
|
||||
{
|
||||
chf.areas[i] = areaId;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
35
libs/recast/recast/src/RecastAssert.cpp
Normal file
35
libs/recast/recast/src/RecastAssert.cpp
Normal file
@ -0,0 +1,35 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include "RecastAssert.h"
|
||||
|
||||
#ifndef NDEBUG
|
||||
|
||||
static rcAssertFailFunc* sRecastAssertFailFunc = 0;
|
||||
|
||||
void rcAssertFailSetCustom(rcAssertFailFunc *assertFailFunc)
|
||||
{
|
||||
sRecastAssertFailFunc = assertFailFunc;
|
||||
}
|
||||
|
||||
rcAssertFailFunc* rcAssertFailGetCustom()
|
||||
{
|
||||
return sRecastAssertFailFunc;
|
||||
}
|
||||
|
||||
#endif
|
||||
1105
libs/recast/recast/src/RecastContour.cpp
Normal file
1105
libs/recast/recast/src/RecastContour.cpp
Normal file
File diff suppressed because it is too large
Load Diff
202
libs/recast/recast/src/RecastFilter.cpp
Normal file
202
libs/recast/recast/src/RecastFilter.cpp
Normal file
@ -0,0 +1,202 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Allows the formation of walkable regions that will flow over low lying
|
||||
/// objects such as curbs, and up structures such as stairways.
|
||||
///
|
||||
/// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt>
|
||||
///
|
||||
/// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call
|
||||
/// #rcFilterLedgeSpans after calling this filter.
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb, rcHeightfield& solid)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES);
|
||||
|
||||
const int w = solid.width;
|
||||
const int h = solid.height;
|
||||
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
rcSpan* ps = 0;
|
||||
bool previousWalkable = false;
|
||||
unsigned char previousArea = RC_NULL_AREA;
|
||||
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; ps = s, s = s->next)
|
||||
{
|
||||
const bool walkable = s->area != RC_NULL_AREA;
|
||||
// If current span is not walkable, but there is walkable
|
||||
// span just below it, mark the span above it walkable too.
|
||||
if (!walkable && previousWalkable)
|
||||
{
|
||||
if (rcAbs((int)s->smax - (int)ps->smax) <= walkableClimb)
|
||||
s->area = previousArea;
|
||||
}
|
||||
// Copy walkable flag so that it cannot propagate
|
||||
// past multiple non-walkable objects.
|
||||
previousWalkable = walkable;
|
||||
previousArea = s->area;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb
|
||||
/// from the current span's maximum.
|
||||
/// This method removes the impact of the overestimation of conservative voxelization
|
||||
/// so the resulting mesh will not have regions hanging in the air over ledges.
|
||||
///
|
||||
/// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt>
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walkableClimb,
|
||||
rcHeightfield& solid)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER);
|
||||
|
||||
const int w = solid.width;
|
||||
const int h = solid.height;
|
||||
const int MAX_HEIGHT = 0xffff;
|
||||
|
||||
// Mark border spans.
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
|
||||
{
|
||||
// Skip non walkable spans.
|
||||
if (s->area == RC_NULL_AREA)
|
||||
continue;
|
||||
|
||||
const int bot = (int)(s->smax);
|
||||
const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
|
||||
|
||||
// Find neighbours minimum height.
|
||||
int minh = MAX_HEIGHT;
|
||||
|
||||
// Min and max height of accessible neighbours.
|
||||
int asmin = s->smax;
|
||||
int asmax = s->smax;
|
||||
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
int dx = x + rcGetDirOffsetX(dir);
|
||||
int dy = y + rcGetDirOffsetY(dir);
|
||||
// Skip neighbours which are out of bounds.
|
||||
if (dx < 0 || dy < 0 || dx >= w || dy >= h)
|
||||
{
|
||||
minh = rcMin(minh, -walkableClimb - bot);
|
||||
continue;
|
||||
}
|
||||
|
||||
// From minus infinity to the first span.
|
||||
rcSpan* ns = solid.spans[dx + dy*w];
|
||||
int nbot = -walkableClimb;
|
||||
int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
|
||||
// Skip neightbour if the gap between the spans is too small.
|
||||
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
|
||||
minh = rcMin(minh, nbot - bot);
|
||||
|
||||
// Rest of the spans.
|
||||
for (ns = solid.spans[dx + dy*w]; ns; ns = ns->next)
|
||||
{
|
||||
nbot = (int)ns->smax;
|
||||
ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
|
||||
// Skip neightbour if the gap between the spans is too small.
|
||||
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
|
||||
{
|
||||
minh = rcMin(minh, nbot - bot);
|
||||
|
||||
// Find min/max accessible neighbour height.
|
||||
if (rcAbs(nbot - bot) <= walkableClimb)
|
||||
{
|
||||
if (nbot < asmin) asmin = nbot;
|
||||
if (nbot > asmax) asmax = nbot;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The current span is close to a ledge if the drop to any
|
||||
// neighbour span is less than the walkableClimb.
|
||||
if (minh < -walkableClimb)
|
||||
{
|
||||
s->area = RC_NULL_AREA;
|
||||
}
|
||||
// If the difference between all neighbours is too large,
|
||||
// we are at steep slope, mark the span as ledge.
|
||||
else if ((asmax - asmin) > walkableClimb)
|
||||
{
|
||||
s->area = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// For this filter, the clearance above the span is the distance from the span's
|
||||
/// maximum to the next higher span's minimum. (Same grid column.)
|
||||
///
|
||||
/// @see rcHeightfield, rcConfig
|
||||
void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeightfield& solid)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE);
|
||||
|
||||
const int w = solid.width;
|
||||
const int h = solid.height;
|
||||
const int MAX_HEIGHT = 0xffff;
|
||||
|
||||
// Remove walkable flag from spans which do not have enough
|
||||
// space above them for the agent to stand there.
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
for (rcSpan* s = solid.spans[x + y*w]; s; s = s->next)
|
||||
{
|
||||
const int bot = (int)(s->smax);
|
||||
const int top = s->next ? (int)(s->next->smin) : MAX_HEIGHT;
|
||||
if ((top - bot) <= walkableHeight)
|
||||
s->area = RC_NULL_AREA;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
644
libs/recast/recast/src/RecastLayers.cpp
Normal file
644
libs/recast/recast/src/RecastLayers.cpp
Normal file
@ -0,0 +1,644 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#include <float.h>
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
|
||||
// Must be 255 or smaller (not 256) because layer IDs are stored as
|
||||
// a byte where 255 is a special value.
|
||||
static const int RC_MAX_LAYERS = 63;
|
||||
static const int RC_MAX_NEIS = 16;
|
||||
|
||||
struct rcLayerRegion
|
||||
{
|
||||
unsigned char layers[RC_MAX_LAYERS];
|
||||
unsigned char neis[RC_MAX_NEIS];
|
||||
unsigned short ymin, ymax;
|
||||
unsigned char layerId; // Layer ID
|
||||
unsigned char nlayers; // Layer count
|
||||
unsigned char nneis; // Neighbour count
|
||||
unsigned char base; // Flag indicating if the region is the base of merged regions.
|
||||
};
|
||||
|
||||
|
||||
static bool contains(const unsigned char* a, const unsigned char an, const unsigned char v)
|
||||
{
|
||||
const int n = (int)an;
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
if (a[i] == v)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static bool addUnique(unsigned char* a, unsigned char& an, int anMax, unsigned char v)
|
||||
{
|
||||
if (contains(a, an, v))
|
||||
return true;
|
||||
|
||||
if ((int)an >= anMax)
|
||||
return false;
|
||||
|
||||
a[an] = v;
|
||||
an++;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
inline bool overlapRange(const unsigned short amin, const unsigned short amax,
|
||||
const unsigned short bmin, const unsigned short bmax)
|
||||
{
|
||||
return (amin > bmax || amax < bmin) ? false : true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct rcLayerSweepSpan
|
||||
{
|
||||
unsigned short ns; // number samples
|
||||
unsigned char id; // region id
|
||||
unsigned char nei; // neighbour id
|
||||
};
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// See the #rcConfig documentation for more information on the configuration parameters.
|
||||
///
|
||||
/// @see rcAllocHeightfieldLayerSet, rcCompactHeightfield, rcHeightfieldLayerSet, rcConfig
|
||||
bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
|
||||
const int borderSize, const int walkableHeight,
|
||||
rcHeightfieldLayerSet& lset)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS);
|
||||
|
||||
const int w = chf.width;
|
||||
const int h = chf.height;
|
||||
|
||||
rcScopedDelete<unsigned char> srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
|
||||
if (!srcReg)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
|
||||
return false;
|
||||
}
|
||||
memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
|
||||
|
||||
const int nsweeps = chf.width;
|
||||
rcScopedDelete<rcLayerSweepSpan> sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP));
|
||||
if (!sweeps)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Partition walkable area into monotone regions.
|
||||
int prevCount[256];
|
||||
unsigned char regId = 0;
|
||||
|
||||
for (int y = borderSize; y < h-borderSize; ++y)
|
||||
{
|
||||
memset(prevCount,0,sizeof(int)*regId);
|
||||
unsigned char sweepId = 0;
|
||||
|
||||
for (int x = borderSize; x < w-borderSize; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
if (chf.areas[i] == RC_NULL_AREA) continue;
|
||||
|
||||
unsigned char sid = 0xff;
|
||||
|
||||
// -x
|
||||
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(0);
|
||||
const int ay = y + rcGetDirOffsetY(0);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
|
||||
if (chf.areas[ai] != RC_NULL_AREA && srcReg[ai] != 0xff)
|
||||
sid = srcReg[ai];
|
||||
}
|
||||
|
||||
if (sid == 0xff)
|
||||
{
|
||||
sid = sweepId++;
|
||||
sweeps[sid].nei = 0xff;
|
||||
sweeps[sid].ns = 0;
|
||||
}
|
||||
|
||||
// -y
|
||||
if (rcGetCon(s,3) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(3);
|
||||
const int ay = y + rcGetDirOffsetY(3);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
|
||||
const unsigned char nr = srcReg[ai];
|
||||
if (nr != 0xff)
|
||||
{
|
||||
// Set neighbour when first valid neighbour is encoutered.
|
||||
if (sweeps[sid].ns == 0)
|
||||
sweeps[sid].nei = nr;
|
||||
|
||||
if (sweeps[sid].nei == nr)
|
||||
{
|
||||
// Update existing neighbour
|
||||
sweeps[sid].ns++;
|
||||
prevCount[nr]++;
|
||||
}
|
||||
else
|
||||
{
|
||||
// This is hit if there is nore than one neighbour.
|
||||
// Invalidate the neighbour.
|
||||
sweeps[sid].nei = 0xff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
srcReg[i] = sid;
|
||||
}
|
||||
}
|
||||
|
||||
// Create unique ID.
|
||||
for (int i = 0; i < sweepId; ++i)
|
||||
{
|
||||
// If the neighbour is set and there is only one continuous connection to it,
|
||||
// the sweep will be merged with the previous one, else new region is created.
|
||||
if (sweeps[i].nei != 0xff && prevCount[sweeps[i].nei] == (int)sweeps[i].ns)
|
||||
{
|
||||
sweeps[i].id = sweeps[i].nei;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (regId == 255)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Region ID overflow.");
|
||||
return false;
|
||||
}
|
||||
sweeps[i].id = regId++;
|
||||
}
|
||||
}
|
||||
|
||||
// Remap local sweep ids to region ids.
|
||||
for (int x = borderSize; x < w-borderSize; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
if (srcReg[i] != 0xff)
|
||||
srcReg[i] = sweeps[srcReg[i]].id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Allocate and init layer regions.
|
||||
const int nregs = (int)regId;
|
||||
rcScopedDelete<rcLayerRegion> regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP));
|
||||
if (!regs)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
|
||||
return false;
|
||||
}
|
||||
memset(regs, 0, sizeof(rcLayerRegion)*nregs);
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
{
|
||||
regs[i].layerId = 0xff;
|
||||
regs[i].ymin = 0xffff;
|
||||
regs[i].ymax = 0;
|
||||
}
|
||||
|
||||
// Find region neighbours and overlapping regions.
|
||||
for (int y = 0; y < h; ++y)
|
||||
{
|
||||
for (int x = 0; x < w; ++x)
|
||||
{
|
||||
const rcCompactCell& c = chf.cells[x+y*w];
|
||||
|
||||
unsigned char lregs[RC_MAX_LAYERS];
|
||||
int nlregs = 0;
|
||||
|
||||
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[i];
|
||||
const unsigned char ri = srcReg[i];
|
||||
if (ri == 0xff) continue;
|
||||
|
||||
regs[ri].ymin = rcMin(regs[ri].ymin, s.y);
|
||||
regs[ri].ymax = rcMax(regs[ri].ymax, s.y);
|
||||
|
||||
// Collect all region layers.
|
||||
if (nlregs < RC_MAX_LAYERS)
|
||||
lregs[nlregs++] = ri;
|
||||
|
||||
// Update neighbours
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = x + rcGetDirOffsetX(dir);
|
||||
const int ay = y + rcGetDirOffsetY(dir);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
||||
const unsigned char rai = srcReg[ai];
|
||||
if (rai != 0xff && rai != ri)
|
||||
{
|
||||
// Don't check return value -- if we cannot add the neighbor
|
||||
// it will just cause a few more regions to be created, which
|
||||
// is fine.
|
||||
addUnique(regs[ri].neis, regs[ri].nneis, RC_MAX_NEIS, rai);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Update overlapping regions.
|
||||
for (int i = 0; i < nlregs-1; ++i)
|
||||
{
|
||||
for (int j = i+1; j < nlregs; ++j)
|
||||
{
|
||||
if (lregs[i] != lregs[j])
|
||||
{
|
||||
rcLayerRegion& ri = regs[lregs[i]];
|
||||
rcLayerRegion& rj = regs[lregs[j]];
|
||||
|
||||
if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, lregs[j]) ||
|
||||
!addUnique(rj.layers, rj.nlayers, RC_MAX_LAYERS, lregs[i]))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Create 2D layers from regions.
|
||||
unsigned char layerId = 0;
|
||||
|
||||
static const int MAX_STACK = 64;
|
||||
unsigned char stack[MAX_STACK];
|
||||
int nstack = 0;
|
||||
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
{
|
||||
rcLayerRegion& root = regs[i];
|
||||
// Skip already visited.
|
||||
if (root.layerId != 0xff)
|
||||
continue;
|
||||
|
||||
// Start search.
|
||||
root.layerId = layerId;
|
||||
root.base = 1;
|
||||
|
||||
nstack = 0;
|
||||
stack[nstack++] = (unsigned char)i;
|
||||
|
||||
while (nstack)
|
||||
{
|
||||
// Pop front
|
||||
rcLayerRegion& reg = regs[stack[0]];
|
||||
nstack--;
|
||||
for (int j = 0; j < nstack; ++j)
|
||||
stack[j] = stack[j+1];
|
||||
|
||||
const int nneis = (int)reg.nneis;
|
||||
for (int j = 0; j < nneis; ++j)
|
||||
{
|
||||
const unsigned char nei = reg.neis[j];
|
||||
rcLayerRegion& regn = regs[nei];
|
||||
// Skip already visited.
|
||||
if (regn.layerId != 0xff)
|
||||
continue;
|
||||
// Skip if the neighbour is overlapping root region.
|
||||
if (contains(root.layers, root.nlayers, nei))
|
||||
continue;
|
||||
// Skip if the height range would become too large.
|
||||
const int ymin = rcMin(root.ymin, regn.ymin);
|
||||
const int ymax = rcMax(root.ymax, regn.ymax);
|
||||
if ((ymax - ymin) >= 255)
|
||||
continue;
|
||||
|
||||
if (nstack < MAX_STACK)
|
||||
{
|
||||
// Deepen
|
||||
stack[nstack++] = (unsigned char)nei;
|
||||
|
||||
// Mark layer id
|
||||
regn.layerId = layerId;
|
||||
// Merge current layers to root.
|
||||
for (int k = 0; k < regn.nlayers; ++k)
|
||||
{
|
||||
if (!addUnique(root.layers, root.nlayers, RC_MAX_LAYERS, regn.layers[k]))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
root.ymin = rcMin(root.ymin, regn.ymin);
|
||||
root.ymax = rcMax(root.ymax, regn.ymax);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
layerId++;
|
||||
}
|
||||
|
||||
// Merge non-overlapping regions that are close in height.
|
||||
const unsigned short mergeHeight = (unsigned short)walkableHeight * 4;
|
||||
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
{
|
||||
rcLayerRegion& ri = regs[i];
|
||||
if (!ri.base) continue;
|
||||
|
||||
unsigned char newId = ri.layerId;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
unsigned char oldId = 0xff;
|
||||
|
||||
for (int j = 0; j < nregs; ++j)
|
||||
{
|
||||
if (i == j) continue;
|
||||
rcLayerRegion& rj = regs[j];
|
||||
if (!rj.base) continue;
|
||||
|
||||
// Skip if the regions are not close to each other.
|
||||
if (!overlapRange(ri.ymin,ri.ymax+mergeHeight, rj.ymin,rj.ymax+mergeHeight))
|
||||
continue;
|
||||
// Skip if the height range would become too large.
|
||||
const int ymin = rcMin(ri.ymin, rj.ymin);
|
||||
const int ymax = rcMax(ri.ymax, rj.ymax);
|
||||
if ((ymax - ymin) >= 255)
|
||||
continue;
|
||||
|
||||
// Make sure that there is no overlap when merging 'ri' and 'rj'.
|
||||
bool overlap = false;
|
||||
// Iterate over all regions which have the same layerId as 'rj'
|
||||
for (int k = 0; k < nregs; ++k)
|
||||
{
|
||||
if (regs[k].layerId != rj.layerId)
|
||||
continue;
|
||||
// Check if region 'k' is overlapping region 'ri'
|
||||
// Index to 'regs' is the same as region id.
|
||||
if (contains(ri.layers,ri.nlayers, (unsigned char)k))
|
||||
{
|
||||
overlap = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Cannot merge of regions overlap.
|
||||
if (overlap)
|
||||
continue;
|
||||
|
||||
// Can merge i and j.
|
||||
oldId = rj.layerId;
|
||||
break;
|
||||
}
|
||||
|
||||
// Could not find anything to merge with, stop.
|
||||
if (oldId == 0xff)
|
||||
break;
|
||||
|
||||
// Merge
|
||||
for (int j = 0; j < nregs; ++j)
|
||||
{
|
||||
rcLayerRegion& rj = regs[j];
|
||||
if (rj.layerId == oldId)
|
||||
{
|
||||
rj.base = 0;
|
||||
// Remap layerIds.
|
||||
rj.layerId = newId;
|
||||
// Add overlaid layers from 'rj' to 'ri'.
|
||||
for (int k = 0; k < rj.nlayers; ++k)
|
||||
{
|
||||
if (!addUnique(ri.layers, ri.nlayers, RC_MAX_LAYERS, rj.layers[k]))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: layer overflow (too many overlapping walkable platforms). Try increasing RC_MAX_LAYERS.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Update height bounds.
|
||||
ri.ymin = rcMin(ri.ymin, rj.ymin);
|
||||
ri.ymax = rcMax(ri.ymax, rj.ymax);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compact layerIds
|
||||
unsigned char remap[256];
|
||||
memset(remap, 0, 256);
|
||||
|
||||
// Find number of unique layers.
|
||||
layerId = 0;
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
remap[regs[i].layerId] = 1;
|
||||
for (int i = 0; i < 256; ++i)
|
||||
{
|
||||
if (remap[i])
|
||||
remap[i] = layerId++;
|
||||
else
|
||||
remap[i] = 0xff;
|
||||
}
|
||||
// Remap ids.
|
||||
for (int i = 0; i < nregs; ++i)
|
||||
regs[i].layerId = remap[regs[i].layerId];
|
||||
|
||||
// No layers, return empty.
|
||||
if (layerId == 0)
|
||||
return true;
|
||||
|
||||
// Create layers.
|
||||
rcAssert(lset.layers == 0);
|
||||
|
||||
const int lw = w - borderSize*2;
|
||||
const int lh = h - borderSize*2;
|
||||
|
||||
// Build contracted bbox for layers.
|
||||
float bmin[3], bmax[3];
|
||||
rcVcopy(bmin, chf.bmin);
|
||||
rcVcopy(bmax, chf.bmax);
|
||||
bmin[0] += borderSize*chf.cs;
|
||||
bmin[2] += borderSize*chf.cs;
|
||||
bmax[0] -= borderSize*chf.cs;
|
||||
bmax[2] -= borderSize*chf.cs;
|
||||
|
||||
lset.nlayers = (int)layerId;
|
||||
|
||||
lset.layers = (rcHeightfieldLayer*)rcAlloc(sizeof(rcHeightfieldLayer)*lset.nlayers, RC_ALLOC_PERM);
|
||||
if (!lset.layers)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'layers' (%d).", lset.nlayers);
|
||||
return false;
|
||||
}
|
||||
memset(lset.layers, 0, sizeof(rcHeightfieldLayer)*lset.nlayers);
|
||||
|
||||
|
||||
// Store layers.
|
||||
for (int i = 0; i < lset.nlayers; ++i)
|
||||
{
|
||||
unsigned char curId = (unsigned char)i;
|
||||
|
||||
rcHeightfieldLayer* layer = &lset.layers[i];
|
||||
|
||||
const int gridSize = sizeof(unsigned char)*lw*lh;
|
||||
|
||||
layer->heights = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
|
||||
if (!layer->heights)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'heights' (%d).", gridSize);
|
||||
return false;
|
||||
}
|
||||
memset(layer->heights, 0xff, gridSize);
|
||||
|
||||
layer->areas = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
|
||||
if (!layer->areas)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'areas' (%d).", gridSize);
|
||||
return false;
|
||||
}
|
||||
memset(layer->areas, 0, gridSize);
|
||||
|
||||
layer->cons = (unsigned char*)rcAlloc(gridSize, RC_ALLOC_PERM);
|
||||
if (!layer->cons)
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'cons' (%d).", gridSize);
|
||||
return false;
|
||||
}
|
||||
memset(layer->cons, 0, gridSize);
|
||||
|
||||
// Find layer height bounds.
|
||||
int hmin = 0, hmax = 0;
|
||||
for (int j = 0; j < nregs; ++j)
|
||||
{
|
||||
if (regs[j].base && regs[j].layerId == curId)
|
||||
{
|
||||
hmin = (int)regs[j].ymin;
|
||||
hmax = (int)regs[j].ymax;
|
||||
}
|
||||
}
|
||||
|
||||
layer->width = lw;
|
||||
layer->height = lh;
|
||||
layer->cs = chf.cs;
|
||||
layer->ch = chf.ch;
|
||||
|
||||
// Adjust the bbox to fit the heightfield.
|
||||
rcVcopy(layer->bmin, bmin);
|
||||
rcVcopy(layer->bmax, bmax);
|
||||
layer->bmin[1] = bmin[1] + hmin*chf.ch;
|
||||
layer->bmax[1] = bmin[1] + hmax*chf.ch;
|
||||
layer->hmin = hmin;
|
||||
layer->hmax = hmax;
|
||||
|
||||
// Update usable data region.
|
||||
layer->minx = layer->width;
|
||||
layer->maxx = 0;
|
||||
layer->miny = layer->height;
|
||||
layer->maxy = 0;
|
||||
|
||||
// Copy height and area from compact heightfield.
|
||||
for (int y = 0; y < lh; ++y)
|
||||
{
|
||||
for (int x = 0; x < lw; ++x)
|
||||
{
|
||||
const int cx = borderSize+x;
|
||||
const int cy = borderSize+y;
|
||||
const rcCompactCell& c = chf.cells[cx+cy*w];
|
||||
for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
|
||||
{
|
||||
const rcCompactSpan& s = chf.spans[j];
|
||||
// Skip unassigned regions.
|
||||
if (srcReg[j] == 0xff)
|
||||
continue;
|
||||
// Skip of does nto belong to current layer.
|
||||
unsigned char lid = regs[srcReg[j]].layerId;
|
||||
if (lid != curId)
|
||||
continue;
|
||||
|
||||
// Update data bounds.
|
||||
layer->minx = rcMin(layer->minx, x);
|
||||
layer->maxx = rcMax(layer->maxx, x);
|
||||
layer->miny = rcMin(layer->miny, y);
|
||||
layer->maxy = rcMax(layer->maxy, y);
|
||||
|
||||
// Store height and area type.
|
||||
const int idx = x+y*lw;
|
||||
layer->heights[idx] = (unsigned char)(s.y - hmin);
|
||||
layer->areas[idx] = chf.areas[j];
|
||||
|
||||
// Check connection.
|
||||
unsigned char portal = 0;
|
||||
unsigned char con = 0;
|
||||
for (int dir = 0; dir < 4; ++dir)
|
||||
{
|
||||
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
|
||||
{
|
||||
const int ax = cx + rcGetDirOffsetX(dir);
|
||||
const int ay = cy + rcGetDirOffsetY(dir);
|
||||
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
|
||||
unsigned char alid = srcReg[ai] != 0xff ? regs[srcReg[ai]].layerId : 0xff;
|
||||
// Portal mask
|
||||
if (chf.areas[ai] != RC_NULL_AREA && lid != alid)
|
||||
{
|
||||
portal |= (unsigned char)(1<<dir);
|
||||
// Update height so that it matches on both sides of the portal.
|
||||
const rcCompactSpan& as = chf.spans[ai];
|
||||
if (as.y > hmin)
|
||||
layer->heights[idx] = rcMax(layer->heights[idx], (unsigned char)(as.y - hmin));
|
||||
}
|
||||
// Valid connection mask
|
||||
if (chf.areas[ai] != RC_NULL_AREA && lid == alid)
|
||||
{
|
||||
const int nx = ax - borderSize;
|
||||
const int ny = ay - borderSize;
|
||||
if (nx >= 0 && ny >= 0 && nx < lw && ny < lh)
|
||||
con |= (unsigned char)(1<<dir);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
layer->cons[idx] = (portal << 4) | con;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (layer->minx > layer->maxx)
|
||||
layer->minx = layer->maxx = 0;
|
||||
if (layer->miny > layer->maxy)
|
||||
layer->miny = layer->maxy = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
1552
libs/recast/recast/src/RecastMesh.cpp
Normal file
1552
libs/recast/recast/src/RecastMesh.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1462
libs/recast/recast/src/RecastMeshDetail.cpp
Normal file
1462
libs/recast/recast/src/RecastMeshDetail.cpp
Normal file
File diff suppressed because it is too large
Load Diff
454
libs/recast/recast/src/RecastRasterization.cpp
Normal file
454
libs/recast/recast/src/RecastRasterization.cpp
Normal file
@ -0,0 +1,454 @@
|
||||
//
|
||||
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgment in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
//
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include "Recast.h"
|
||||
#include "RecastAlloc.h"
|
||||
#include "RecastAssert.h"
|
||||
|
||||
inline bool overlapBounds(const float* amin, const float* amax, const float* bmin, const float* bmax)
|
||||
{
|
||||
bool overlap = true;
|
||||
overlap = (amin[0] > bmax[0] || amax[0] < bmin[0]) ? false : overlap;
|
||||
overlap = (amin[1] > bmax[1] || amax[1] < bmin[1]) ? false : overlap;
|
||||
overlap = (amin[2] > bmax[2] || amax[2] < bmin[2]) ? false : overlap;
|
||||
return overlap;
|
||||
}
|
||||
|
||||
inline bool overlapInterval(unsigned short amin, unsigned short amax,
|
||||
unsigned short bmin, unsigned short bmax)
|
||||
{
|
||||
if (amax < bmin) return false;
|
||||
if (amin > bmax) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
static rcSpan* allocSpan(rcHeightfield& hf)
|
||||
{
|
||||
// If running out of memory, allocate new page and update the freelist.
|
||||
if (!hf.freelist || !hf.freelist->next)
|
||||
{
|
||||
// Create new page.
|
||||
// Allocate memory for the new pool.
|
||||
rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
|
||||
if (!pool) return 0;
|
||||
|
||||
// Add the pool into the list of pools.
|
||||
pool->next = hf.pools;
|
||||
hf.pools = pool;
|
||||
// Add new items to the free list.
|
||||
rcSpan* freelist = hf.freelist;
|
||||
rcSpan* head = &pool->items[0];
|
||||
rcSpan* it = &pool->items[RC_SPANS_PER_POOL];
|
||||
do
|
||||
{
|
||||
--it;
|
||||
it->next = freelist;
|
||||
freelist = it;
|
||||
}
|
||||
while (it != head);
|
||||
hf.freelist = it;
|
||||
}
|
||||
|
||||
// Pop item from in front of the free list.
|
||||
rcSpan* it = hf.freelist;
|
||||
hf.freelist = hf.freelist->next;
|
||||
return it;
|
||||
}
|
||||
|
||||
static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
|
||||
{
|
||||
if (!ptr) return;
|
||||
// Add the node in front of the free list.
|
||||
ptr->next = hf.freelist;
|
||||
hf.freelist = ptr;
|
||||
}
|
||||
|
||||
static bool addSpan(rcHeightfield& hf, const int x, const int y,
|
||||
const unsigned short smin, const unsigned short smax,
|
||||
const unsigned char area, const int flagMergeThr)
|
||||
{
|
||||
|
||||
int idx = x + y*hf.width;
|
||||
|
||||
rcSpan* s = allocSpan(hf);
|
||||
if (!s)
|
||||
return false;
|
||||
s->smin = smin;
|
||||
s->smax = smax;
|
||||
s->area = area;
|
||||
s->next = 0;
|
||||
|
||||
// Empty cell, add the first span.
|
||||
if (!hf.spans[idx])
|
||||
{
|
||||
hf.spans[idx] = s;
|
||||
return true;
|
||||
}
|
||||
rcSpan* prev = 0;
|
||||
rcSpan* cur = hf.spans[idx];
|
||||
|
||||
// Insert and merge spans.
|
||||
while (cur)
|
||||
{
|
||||
if (cur->smin > s->smax)
|
||||
{
|
||||
// Current span is further than the new span, break.
|
||||
break;
|
||||
}
|
||||
else if (cur->smax < s->smin)
|
||||
{
|
||||
// Current span is before the new span advance.
|
||||
prev = cur;
|
||||
cur = cur->next;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Merge spans.
|
||||
if (cur->smin < s->smin)
|
||||
s->smin = cur->smin;
|
||||
if (cur->smax > s->smax)
|
||||
s->smax = cur->smax;
|
||||
|
||||
// Merge flags.
|
||||
if (rcAbs((int)s->smax - (int)cur->smax) <= flagMergeThr)
|
||||
s->area = rcMax(s->area, cur->area);
|
||||
|
||||
// Remove current span.
|
||||
rcSpan* next = cur->next;
|
||||
freeSpan(hf, cur);
|
||||
if (prev)
|
||||
prev->next = next;
|
||||
else
|
||||
hf.spans[idx] = next;
|
||||
cur = next;
|
||||
}
|
||||
}
|
||||
|
||||
// Insert new span.
|
||||
if (prev)
|
||||
{
|
||||
s->next = prev->next;
|
||||
prev->next = s;
|
||||
}
|
||||
else
|
||||
{
|
||||
s->next = hf.spans[idx];
|
||||
hf.spans[idx] = s;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// The span addition can be set to favor flags. If the span is merged to
|
||||
/// another span and the new @p smax is within @p flagMergeThr units
|
||||
/// from the existing span, the span flags are merged.
|
||||
///
|
||||
/// @see rcHeightfield, rcSpan.
|
||||
bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
|
||||
const unsigned short smin, const unsigned short smax,
|
||||
const unsigned char area, const int flagMergeThr)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
if (!addSpan(hf, x, y, smin, smax, area, flagMergeThr))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// divides a convex polygons into two convex polygons on both sides of a line
|
||||
static void dividePoly(const float* in, int nin,
|
||||
float* out1, int* nout1,
|
||||
float* out2, int* nout2,
|
||||
float x, int axis)
|
||||
{
|
||||
float d[12];
|
||||
for (int i = 0; i < nin; ++i)
|
||||
d[i] = x - in[i*3+axis];
|
||||
|
||||
int m = 0, n = 0;
|
||||
for (int i = 0, j = nin-1; i < nin; j=i, ++i)
|
||||
{
|
||||
bool ina = d[j] >= 0;
|
||||
bool inb = d[i] >= 0;
|
||||
if (ina != inb)
|
||||
{
|
||||
float s = d[j] / (d[j] - d[i]);
|
||||
out1[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
|
||||
out1[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
|
||||
out1[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
|
||||
rcVcopy(out2 + n*3, out1 + m*3);
|
||||
m++;
|
||||
n++;
|
||||
// add the i'th point to the right polygon. Do NOT add points that are on the dividing line
|
||||
// since these were already added above
|
||||
if (d[i] > 0)
|
||||
{
|
||||
rcVcopy(out1 + m*3, in + i*3);
|
||||
m++;
|
||||
}
|
||||
else if (d[i] < 0)
|
||||
{
|
||||
rcVcopy(out2 + n*3, in + i*3);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
else // same side
|
||||
{
|
||||
// add the i'th point to the right polygon. Addition is done even for points on the dividing line
|
||||
if (d[i] >= 0)
|
||||
{
|
||||
rcVcopy(out1 + m*3, in + i*3);
|
||||
m++;
|
||||
if (d[i] != 0)
|
||||
continue;
|
||||
}
|
||||
rcVcopy(out2 + n*3, in + i*3);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
|
||||
*nout1 = m;
|
||||
*nout2 = n;
|
||||
}
|
||||
|
||||
|
||||
|
||||
static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
|
||||
const unsigned char area, rcHeightfield& hf,
|
||||
const float* bmin, const float* bmax,
|
||||
const float cs, const float ics, const float ich,
|
||||
const int flagMergeThr)
|
||||
{
|
||||
const int w = hf.width;
|
||||
const int h = hf.height;
|
||||
float tmin[3], tmax[3];
|
||||
const float by = bmax[1] - bmin[1];
|
||||
|
||||
// Calculate the bounding box of the triangle.
|
||||
rcVcopy(tmin, v0);
|
||||
rcVcopy(tmax, v0);
|
||||
rcVmin(tmin, v1);
|
||||
rcVmin(tmin, v2);
|
||||
rcVmax(tmax, v1);
|
||||
rcVmax(tmax, v2);
|
||||
|
||||
// If the triangle does not touch the bbox of the heightfield, skip the triagle.
|
||||
if (!overlapBounds(bmin, bmax, tmin, tmax))
|
||||
return true;
|
||||
|
||||
// Calculate the footprint of the triangle on the grid's y-axis
|
||||
int y0 = (int)((tmin[2] - bmin[2])*ics);
|
||||
int y1 = (int)((tmax[2] - bmin[2])*ics);
|
||||
y0 = rcClamp(y0, 0, h-1);
|
||||
y1 = rcClamp(y1, 0, h-1);
|
||||
|
||||
// Clip the triangle into all grid cells it touches.
|
||||
float buf[7*3*4];
|
||||
float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3;
|
||||
|
||||
rcVcopy(&in[0], v0);
|
||||
rcVcopy(&in[1*3], v1);
|
||||
rcVcopy(&in[2*3], v2);
|
||||
int nvrow, nvIn = 3;
|
||||
|
||||
for (int y = y0; y <= y1; ++y)
|
||||
{
|
||||
// Clip polygon to row. Store the remaining polygon as well
|
||||
const float cz = bmin[2] + y*cs;
|
||||
dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2);
|
||||
rcSwap(in, p1);
|
||||
if (nvrow < 3) continue;
|
||||
|
||||
// find the horizontal bounds in the row
|
||||
float minX = inrow[0], maxX = inrow[0];
|
||||
for (int i=1; i<nvrow; ++i)
|
||||
{
|
||||
if (minX > inrow[i*3]) minX = inrow[i*3];
|
||||
if (maxX < inrow[i*3]) maxX = inrow[i*3];
|
||||
}
|
||||
int x0 = (int)((minX - bmin[0])*ics);
|
||||
int x1 = (int)((maxX - bmin[0])*ics);
|
||||
x0 = rcClamp(x0, 0, w-1);
|
||||
x1 = rcClamp(x1, 0, w-1);
|
||||
|
||||
int nv, nv2 = nvrow;
|
||||
|
||||
for (int x = x0; x <= x1; ++x)
|
||||
{
|
||||
// Clip polygon to column. store the remaining polygon as well
|
||||
const float cx = bmin[0] + x*cs;
|
||||
dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0);
|
||||
rcSwap(inrow, p2);
|
||||
if (nv < 3) continue;
|
||||
|
||||
// Calculate min and max of the span.
|
||||
float smin = p1[1], smax = p1[1];
|
||||
for (int i = 1; i < nv; ++i)
|
||||
{
|
||||
smin = rcMin(smin, p1[i*3+1]);
|
||||
smax = rcMax(smax, p1[i*3+1]);
|
||||
}
|
||||
smin -= bmin[1];
|
||||
smax -= bmin[1];
|
||||
// Skip the span if it is outside the heightfield bbox
|
||||
if (smax < 0.0f) continue;
|
||||
if (smin > by) continue;
|
||||
// Clamp the span to the heightfield bbox.
|
||||
if (smin < 0.0f) smin = 0;
|
||||
if (smax > by) smax = by;
|
||||
|
||||
// Snap the span to the heightfield height grid.
|
||||
unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
|
||||
unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
|
||||
|
||||
if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// No spans will be added if the triangle does not overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
|
||||
const unsigned char area, rcHeightfield& solid,
|
||||
const int flagMergeThr)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
if (!rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
const int* tris, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
// Rasterize triangles.
|
||||
for (int i = 0; i < nt; ++i)
|
||||
{
|
||||
const float* v0 = &verts[tris[i*3+0]*3];
|
||||
const float* v1 = &verts[tris[i*3+1]*3];
|
||||
const float* v2 = &verts[tris[i*3+2]*3];
|
||||
// Rasterize.
|
||||
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
|
||||
const unsigned short* tris, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
// Rasterize triangles.
|
||||
for (int i = 0; i < nt; ++i)
|
||||
{
|
||||
const float* v0 = &verts[tris[i*3+0]*3];
|
||||
const float* v1 = &verts[tris[i*3+1]*3];
|
||||
const float* v2 = &verts[tris[i*3+2]*3];
|
||||
// Rasterize.
|
||||
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/// @par
|
||||
///
|
||||
/// Spans will only be added for triangles that overlap the heightfield grid.
|
||||
///
|
||||
/// @see rcHeightfield
|
||||
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
|
||||
rcHeightfield& solid, const int flagMergeThr)
|
||||
{
|
||||
rcAssert(ctx);
|
||||
|
||||
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
|
||||
|
||||
const float ics = 1.0f/solid.cs;
|
||||
const float ich = 1.0f/solid.ch;
|
||||
// Rasterize triangles.
|
||||
for (int i = 0; i < nt; ++i)
|
||||
{
|
||||
const float* v0 = &verts[(i*3+0)*3];
|
||||
const float* v1 = &verts[(i*3+1)*3];
|
||||
const float* v2 = &verts[(i*3+2)*3];
|
||||
// Rasterize.
|
||||
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
|
||||
{
|
||||
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
1824
libs/recast/recast/src/RecastRegion.cpp
Normal file
1824
libs/recast/recast/src/RecastRegion.cpp
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user